Проверить является ли система векторов линейно зависимой. Линейно зависимые и линейно независимые системы векторов. Линейная зависимость и независимость векторов

В данной статье мы расскажем:

  • что такое коллинеарные векторы;
  • какие существуют условия коллинеарности векторов;
  • какие существуют свойства коллинеарных векторов;
  • что такое линейная зависимость коллинеарных векторов.
Определение 1

Коллинеарные векторы - это векторы, которые являются параллелями одной прямой или лежат на одной прямой.

Пример 1

Условия коллинеарности векторов

Два векторы являются коллинеарными, если выполняется любое из следующих условий:

  • условие 1 . Векторы a и b коллинеарны при наличии такого числа λ , что a = λ b ;
  • условие 2 . Векторы a и b коллинеарны при равном отношении координат:

a = (a 1 ; a 2) , b = (b 1 ; b 2) ⇒ a ∥ b ⇔ a 1 b 1 = a 2 b 2

  • условие 3 . Векторы a и b коллинеарны при условии равенства векторного произведения и нулевого вектора:

a ∥ b ⇔ a , b = 0

Замечание 1

Условие 2 неприменимо, если одна из координат вектора равна нулю.

Замечание 2

Условие 3 применимо только к тем векторам, которые заданы в пространстве.

Примеры задач на исследование коллинеарности векторов

Пример 1

Исследуем векторы а = (1 ; 3) и b = (2 ; 1) на коллинеарность.

Как решить?

В данном случае необходимо воспользоваться 2-м условием коллинеарности. Для заданных векторов оно выглядит так:

Равенство неверное. Отсюда можно сделать вывод, что векторы a и b неколлинеарны.

Ответ : a | | b

Пример 2

Какое значение m вектора a = (1 ; 2) и b = (- 1 ; m) необходимо для коллинеарности векторов?

Как решить?

Используя второе условие коллинераности, векторы будут коллинеарными, если их координаты будут пропорциональными:

Отсюда видно, что m = - 2 .

Ответ: m = - 2 .

Критерии линейной зависимости и линейной независимости систем векторов

Теорема

Система векторов векторного пространства линейно зависима только в том случае, когда один из векторов системы можно выразить через остальные векторы данной системы.

Доказательство

Пусть система e 1 , e 2 , . . . , e n является линейно зависимой. Запишем линейную комбинацию этой системы равную нулевому вектору:

a 1 e 1 + a 2 e 2 + . . . + a n e n = 0

в которой хотя бы один из коэффициентов комбинации не равен нулю.

Пусть a k ≠ 0 k ∈ 1 , 2 , . . . , n .

Делим обе части равенства на ненулевой коэффициент:

a k - 1 (a k - 1 a 1) e 1 + (a k - 1 a k) e k + . . . + (a k - 1 a n) e n = 0

Обозначим:

A k - 1 a m , где m ∈ 1 , 2 , . . . , k - 1 , k + 1 , n

В таком случае:

β 1 e 1 + . . . + β k - 1 e k - 1 + β k + 1 e k + 1 + . . . + β n e n = 0

или e k = (- β 1) e 1 + . . . + (- β k - 1) e k - 1 + (- β k + 1) e k + 1 + . . . + (- β n) e n

Отсюда следует, что один из векторов системы выражается через все остальные векторы системы. Что и требовалось доказать (ч.т.д.).

Достаточность

Пусть один из векторов можно линейно выразить через все остальные векторы системы:

e k = γ 1 e 1 + . . . + γ k - 1 e k - 1 + γ k + 1 e k + 1 + . . . + γ n e n

Переносим вектор e k в правую часть этого равенства:

0 = γ 1 e 1 + . . . + γ k - 1 e k - 1 - e k + γ k + 1 e k + 1 + . . . + γ n e n

Поскольку коэффициент вектора e k равен - 1 ≠ 0 , у нас получается нетривиальное представление нуля системой векторов e 1 , e 2 , . . . , e n , а это, в свою очередь, означает, что данная система векторов линейно зависима. Что и требовалось доказать (ч.т.д.).

Следствие:

  • Система векторов является линейно независимой, когда ни один из ее векторов нельзя выразить через все остальные векторы системы.
  • Система векторов, которая содержит нулевой вектор или два равных вектора, линейно зависима.

Свойства линейно зависимых векторов

  1. Для 2-х и 3-х мерных векторов выполняется условие: два линейно зависимых вектора - коллинеарны. Два коллинеарных вектора - линейно зависимы.
  2. Для 3-х мерных векторов выполняется условие: три линейно зависимые вектора - компланарны. (3 компланарных вектора - линейно зависимы).
  3. Для n-мерных векторов выполняется условие: n + 1 вектор всегда линейно зависимы.

Примеры решения задач на линейную зависимость или линейную независимость векторов

Пример 3

Проверим векторы a = 3 , 4 , 5 , b = - 3 , 0 , 5 , c = 4 , 4 , 4 , d = 3 , 4 , 0 на линейную независимость.

Решение. Векторы являются линейно зависимыми, поскольку размерность векторов меньше количества векторов.

Пример 4

Проверим векторы a = 1 , 1 , 1 , b = 1 , 2 , 0 , c = 0 , - 1 , 1 на линейную независимость.

Решение. Находим значения коэффициентов, при которых линейная комбинация будет равняться нулевому вектору:

x 1 a + x 2 b + x 3 c 1 = 0

Записываем векторное уравнение в виде линейного:

x 1 + x 2 = 0 x 1 + 2 x 2 - x 3 = 0 x 1 + x 3 = 0

Решаем эту систему при помощи метода Гаусса:

1 1 0 | 0 1 2 - 1 | 0 1 0 1 | 0 ~

Из 2-ой строки вычитаем 1-ю, из 3-ей - 1-ю:

~ 1 1 0 | 0 1 - 1 2 - 1 - 1 - 0 | 0 - 0 1 - 1 0 - 1 1 - 0 | 0 - 0 ~ 1 1 0 | 0 0 1 - 1 | 0 0 - 1 1 | 0 ~

Из 1-й строки вычитаем 2-ю, к 3-ей прибавляем 2-ю:

~ 1 - 0 1 - 1 0 - (- 1) | 0 - 0 0 1 - 1 | 0 0 + 0 - 1 + 1 1 + (- 1) | 0 + 0 ~ 0 1 0 | 1 0 1 - 1 | 0 0 0 0 | 0

Из решения следует, что у системы множество решений. Это значит, что существует ненулевая комбинация значения таких чисел x 1 , x 2 , x 3 , при которых линейная комбинация a , b , c равняется нулевому вектору. Следовательно, векторы a , b , c являются линейно зависимыми. ​​​​​​​

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

a 1 = { 3, 5, 1 , 4 }, a 2 = { –2, 1, -5 , -7 }, a 3 = { -1, –2, 0, –1 }.

Р е ш е н и е. Ищем общее решение системы уравнений

a 1 x 1 + a 2 x 2 + a 3 x 3 = Θ

методом Гаусса. Для этого запишем эту однородную систему по координатам:

Матрица системы

Разрешенная система имеет вид: (r A = 2, n = 3). Система совместна и неопределена. Ее общее решение (x 2 – свободная переменная): x 3 = 13x 2 ; 3x 1 – 2x 2 – 13x 2 = 0 => x 1 = 5x 2 => X o = . Наличие ненулевого частного решения, например, , говорит о том, векторы a 1 , a 2 , a 3 линейно зависимы.

Пример 2.

Выяснить, является ли данная система векторов линейно зависимой или линейно независимой:

1. a 1 = { -20, -15, - 4 }, a 2 = { –7, -2, -4 }, a 3 = { 3, –1, –2 }.

Р е ш е н и е. Рассмотрим однородную систему уравнений a 1 x 1 + a 2 x 2 + a 3 x 3 = Θ

или в развернутом виде (по координатам)

Система однородна. Если она невырождена, то она имеет единственное решение. В случае однородной системы – нулевое (тривиальное) решение. Значит, в этом случае система векторов независима. Если же система вырождена, то она имеет ненулевые решения и, следовательно, она зависима.

Проверяем систему на вырожденность:

= –80 – 28 + 180 – 48 + 80 – 210 = – 106 ≠ 0.

Система невырождена и, т.о., векторы a 1 , a 2 , a 3 линейно независимы.

Задания. Выяснить, является ли данная система векторов линейно зависимой или линейно независимой:

1. a 1 = { -4, 2, 8 }, a 2 = { 14, -7, -28 }.

2. a 1 = { 2, -1, 3, 5 }, a 2 = { 6, -3, 3, 15 }.

3. a 1 = { -7, 5, 19 }, a 2 = { -5, 7 , -7 }, a 3 = { -8, 7, 14 }.

4. a 1 = { 1, 2, -2 }, a 2 = { 0, -1, 4 }, a 3 = { 2, -3, 3 }.

5. a 1 = { 1, 8 , -1 }, a 2 = { -2, 3, 3 }, a 3 = { 4, -11, 9 }.

6. a 1 = { 1, 2 , 3 }, a 2 = { 2, -1 , 1 }, a 3 = { 1, 3, 4 }.

7. a 1 = {0, 1, 1 , 0}, a 2 = {1, 1 , 3, 1}, a 3 = {1, 3, 5, 1}, a 4 = {0, 1, 1, -2}.

8. a 1 = {-1, 7, 1 , -2}, a 2 = {2, 3 , 2, 1}, a 3 = {4, 4, 4, -3}, a 4 = {1, 6, -11, 1}.

9. Доказать, что система векторов будет линейно зависимой, если она содержит:

а) два равных вектора;

б) два пропорциональных вектора.

Векторы, их свойства и действия с ними

Векторы, действия с векторами, линейное векторное пространство.

Векторы- упорядоченная совокупность конечного количества действительных чисел.

Действия: 1.Умножение вектора на число: лямда*вектор х=(лямда*х 1 , лямда*х 2 … лямда*х n).(3,4, 0, 7)*3=(9, 12,0,21)

2.Сложение векторов (принадлежат одному и тому же векторному пространству) вектор х+вектор у = (х 1 +у 1, х 2 +у 2, … х n +у n ,)

3. Вектор 0=(0,0…0)---n E n – n-мерное (линейное пространство) вектор х +вектор 0 = вектор х

Теорема. Для того чтобы система n векторов, n- мерного линейного пространства была линейно зависимой, необходимо и достаточно, чтобы один из векторов были линейной комбинацией остальным.

Теорема. Любая совокупность n+ 1ого вектора n- мерного линейного пространства явл. линейно зависимой.

Сложение векторов, умножение векторов на числа. Вычитание векторов.

Суммой двух векторов и называется вектор, направленный из начала вектора в конец вектора при условии, что начало совпадет с концом вектора. Если векторы заданы их разложениями по базисным ортам, то при сложении векторов складываются их соответствующие координаты.

Рассмотрим это на примере декартовой системы координат. Пусть

Покажем, что

Из рисунка 3 видно, что

Сумма любого конечного числа векторов может быть найдена по правилу многоугольника (рис. 4): чтобы построить сумму конечного числа векторов, достаточно совместить начало каждого последующего вектора с концом предыдущего и построить вектор, соединяющий начало первого вектора с концом последнего.

Свойства операции сложения векторов:

В этих выражениях m, n - числа.

Разностью векторов и называют вектор Второе слагаемое является вектором, противоположным вектору по направлению, но равным ему по длине.

Таким образом, операция вычитания векторов заменяется на операцию сложения

Вектор, начало которого находится в начале координат, а конец - в точке А (x1, y1, z1), называют радиус-вектором точки А и обозначают или просто. Так как его координаты совпадают с координатами точки А, то его разложение по ортам имеет вид

Вектор, имеющий начало в точке А(x1, y1, z1) и конец в точке B(x2, y2, z2), может быть записан в виде

где r 2 - радиус-вектор точки В; r 1 - радиус-вектор точки А.

Поэтому разложение вектора по ортам имеет вид

Его длина равна расстоянию между точками А и В

УМНОЖЕНИЕ

Так в случае плоской задачи произведение вектор на a = {ax; ay} на число b находится по формуле

a · b = {ax · b; ay · b}

Пример 1. Найти произведение вектора a = {1; 2} на 3.

3 · a = {3 · 1; 3 · 2} = {3; 6}

Так в случае пространственной задачи произведение вектора a = {ax; ay; az} на число b находится по формуле

a · b = {ax · b; ay · b; az · b}

Пример 1. Найти произведение вектора a = {1; 2; -5} на 2.

2 · a = {2 · 1; 2 · 2; 2 · (-5)} = {2; 4; -10}

Скалярное произведение векторов и где - угол между векторами и ; если либо , то

Из определения скалярного произведения следует, что

где, например, есть величина проекции вектора на направление вектора .

Скалярный квадрат вектора:

Свойства скалярного произведения:

Скалярное произведение в координатах

Если то

Угол между векторами

Угол между векторами - угол между направлениями этих векторов (наименьший угол).

Векторное произведение(Векторное произведение двух векторов.)- это псевдовектор, перпендикулярный плоскости, построенной по двум сомножителям, являющийся результатом бинарной операции «векторное умножение» над векторами в трёхмерном Евклидовом пространстве. Произведение не является ни коммутативным, ни ассоциативным (оно является антикоммутативным) и отличается от скалярного произведения векторов. Во многих задачах инженерии и физики нужно иметь возможность строить вектор, перпендикулярный двум имеющимся - векторное произведение предоставляет эту возможность. Векторное произведение полезно для «измерения» перпендикулярности векторов - длина векторного произведения двух векторов равна произведению их длин, если они перпендикулярны, и уменьшается до нуля, если векторы параллельны либо антипараллельны.

Векторное произведение определено только в трёхмерном и семимерном пространствах. Результат векторного произведения, как и скалярного, зависит от метрики Евклидова пространства.

В отличие от формулы для вычисления по координатам векторов скалярного произведения в трёхмерной прямоугольной системе координат, формула для векторного произведения зависит от ориентации прямоугольной системы координат или, иначе, её «хиральности»

Коллинеарность векторов.

Два ненулевых (не равных 0) вектора называются коллинеа́рными, если они лежат на параллельных прямых или на одной прямой. Допусти́м, но не рекомендуется синоним - «параллельные» векторы. Коллинеарные векторы могут быть одинаково направлены («сонаправлены») или противоположно направлены (в последнем случае их иногда называют «антиколлинеарными» или «антипараллельными»).

Сме́шанное произведе́ние векторов(a, b,c) - скалярное произведение вектора a на векторное произведение векторов b и c:

(a,b,c)=a ⋅(b ×c)

иногда его называют тройным скалярным произведением векторов, по всей видимости из-за того, что результатом является скаляр (точнее - псевдоскаляр).

Геометрический смысл: Модуль смешанного произведения численно равен объёму параллелепипеда, образованного векторами(a,b,c) .

Свойства

Смешанное произведение кососимметрично по отношению ко всем своим аргументам:т. е. перестановка любых двух сомножителей меняет знак произведения. Отсюда следует, чтоСмешанное произведение в правой декартовой системе координат (в ортонормированном базисе) равно определителю матрицы, составленной из векторов и:

Смешанное произведение в левой декартовой системе координат (в ортонормированном базисе) равно определителю матрицы, составленной из векторов и, взятому со знаком "минус":

В частности,

Если любые два вектора параллельны, то с любым третьим вектором они образуют смешанное произведение равное нулю.

Если три вектора линейно зависимы (т. е. компланарны, лежат в одной плоскости), то их смешанное произведение равно нулю.

Геометрический смысл - Смешанное произведение по абсолютному значению равно объёму параллелепипеда (см. рисунок), образованного векторами и; знак зависит от того, является ли эта тройка векторов правой или левой.

Компланарность векторов.

Три вектора (или большее число) называются компланарными, если они, будучи приведенными к общему началу, лежат в одной плоскости

Свойства компланарности

Если хотя бы один из трёх векторов - нулевой, то три вектора тоже считаются компланарными.

Тройка векторов, содержащая пару коллинеарных векторов, компланарна.

Смешанное произведение компланарных векторов. Это - критерий компланарности трёх векторов.

Компланарные векторы - линейно зависимы. Это - тоже критерий компланарности.

В 3-мерном пространстве 3 некомпланарных вектора образуют базис

Линейно зависимые и линейно независимые векторы.

Линейно зависимые и независимые системы векторов. Определение . Система векторов называется линейно зависимой , если существует хотя бы одна нетривиальная линейная комбинация этих векторов, равная нулевому вектору. В противном случае, т.е. если только тривиальная линейная комбинация данных векторов равна нулевому вектору, векторы называются линейно независимыми .

Теорема (критерий линейной зависимости) . Для того чтобы система век торов линейного пространства была линейно зависимой, необходимо и достаточно, чтобы, по крайней мере, один из этих векторов являлся линейной комбинацией остальных.

1) Если среди векторов имеется хотя бы один нулевой вектор, то вся система векторов линейно зависима.

В самом деле, если, например, , то, полагая , имеем нетривиальную линейную комбинацию .▲

2) Если среди векторов некоторые образуют линейно зависимую систему, то и вся система линейно зависима.

Действительно, пусть векторы , , линейно зависимы. Значит, существует нетривиальная линейная комбинация , равная нулевому вектору. Но тогда, полагая , получим также нетривиальную линейную комбинацию , равную нулевому вектору.

2. Базис и размерность. Определение . Система линейно независимых векторов векторного пространства называетсябазисом этого пространства, если любой вектор из может быть представлен в виде линейной комбинации векторов этой системы, т.е. для каждого вектора существуют вещественные числа такие, что имеет место равенство Это равенство называется разложением вектора по базису , а числа называютсякоординатами вектора относительно базиса (или в базисе ) .

Теорема (о единственности разложения по базису) . Каждый вектор пространства может быть разложен по базису единственным образом, т.е. координаты каждого вектора в базисе определяются однозначно.

Пусть L – линейное пространство над полем Р . Пусть А1, а2, … , аn (*) конечная система векторов из L . Вектор В = a1×А1 + a2×А2 + … + an×Аn (16) называется Линейной комбинацией векторов ( *), или говорят, что вектор В линейно выражается через систему векторов (*).

Определение 14. Система векторов (*) называется Линейно зависимой , тогда и только тогда, когда существует такой ненулевой набор коэффициентов a1, a2, … , an, что a1×А1 + a2×А2 + … + an×Аn = 0. Если же a1×А1 + a2×А2 + … + an×Аn = 0 Û a1 = a2 = … = an = 0, то система (*) называется Линейно независимой.

Свойства линейной зависимости и независимости.

10. Если система векторов содержит нулевой вектор, то она линейно зависима.

Действительно, если в системе (*) вектор А1 = 0, То 1×0 + 0×А2 + … + 0 ×Аn = 0 .

20. Если система векторов содержит два пропорциональных вектора, то она линейно зависима.

Пусть А1 = L ×а2. Тогда 1×А1 –l×А2 + 0×А3 + … + 0×А N = 0.

30. Конечная система векторов (*) при n ³ 2 линейно зависима тогда и только тогда, когда хотя бы один из её векторов является линейной комбинацией остальных векторов этой системы.

Þ Пусть (*) линейно зависима. Тогда найдётся ненулевой набор коэффициентов a1, a2, … , an, при котором a1×А1 + a2×А2 + … + an×Аn = 0 . Не нарушая общности, можно считать, что a1 ¹ 0. Тогда существует и А1 = ×a2×А2 + … + ×an×А N. Итак, вектор А1 является линейной комбинацией остальных векторов.

Ü Пусть один из векторов (*) является линейной комбинацией остальных. Можно считать, что это первый вектор, т. е. А1 = B2А2 + … + bnА N, Отсюда (–1)×А1 + b2А2 + … + bnА N = 0 , т. е. (*) линейно зависима.

Замечание. Используя последнее свойство, можно дать определение линейной зависимости и независимости бесконечной системы векторов.

Определение 15. Система векторов А1, а2, … , аn , … (**) называется Линейно зависимой, Если хотя бы один её вектор является линейной комбинацией некоторого конечного числа остальных векторов. В противном случае система (**) называется Линейно независимой.

40. Конечная система векторов линейно независима тогда и только тогда, когда ни один из её векторов нельзя линейно выразить через остальные её векторы.

50. Если система векторов линейно независима, то любая её подсистема тоже линейно независима.

60. Если некоторая подсистема данной системы векторов линейно зависима, то и вся система тоже линейно зависима.

Пусть даны две системы векторов А1, а2, … , аn , … (16) и В1, в2, … , вs, … (17). Если каждый вектор системы (16) можно представить в виде линейной комбинации конечного числа векторов системы (17), то говорят, что система (17) линейно выражается через систему (16).

Определение 16. Две системы векторов называются Эквивалентными , если каждая из них линейно выражается через другую.

Теорема 9 (основная теорема о линейной зависимости).

Пусть и – две конечные системы векторов из L . Если первая система линейно независима и линейно выражается через вторую, то N £ s.

Доказательство. Предположим, что N > S. По условию теоремы

(21)

Так как система линейно независима, то равенство (18) Û Х1=х2=…=х N= 0. Подставим сюда выражения векторов : …+=0 (19). Отсюда (20). Условия (18), (19) и (20), очевидно, эквивалентны. Но (18) выполняется только при Х1=х2=…=х N= 0. Найдём, когда верно равенство (20). Если все его коэффициенты равны нулю, то оно, очевидно, верно. Приравняв их нулю, получим систему (21). Так как эта система имеет нулевое , то она

совместна. Так как число уравнений больше числа неизвестных, то система имеет бесконечно много решений. Следовательно, у неё есть ненулевое Х10, х20, …, х N0 . При этих значениях равенство (18) будет верно, что противоречит тому, что система векторов линейно независима. Итак, наше предположение не верно. Следовательно, N £ s.

Следствие. Если две эквивалентные системы векторов конечны и линейно независимы, то они содержат одинаковое число векторов.

Определение 17. Система векторов называется Максимальной линейно независимой системой векторов Линейного пространства L , если она линейно независима, но при добавлении к ней любого вектора из L , не входящего в эту систему, она становится уже линейно зависимой.

Теорема 10. Любые две конечные максимальные линейно независимые системы векторов из L Содержат одинаковое число векторов.

Доказательство следует из того, что любые две максимальные линейно независимые системы векторов эквивалентны.

Легко доказать, что любую линейно независимую систему векторов пространства L можно дополнить до максимальной линейно независимой системы векторов этого пространства.

Примеры:

1. Во множестве всех коллинеарных геометрических векторов любая система, состоящая их одного ненулевого вектора, является максимальной линейно независимой.

2. Во множестве всех компланарных геометрических векторов любые два неколлинеарных вектора составляют максимальную линейно независимую систему.

3. Во множестве всех возможных геометрических векторов трёхмерного евклидова пространства любая система трёх некомпланарных векторов является максимальной линейно независимой.

4. Во множестве всех многочленов степени не выше N С действительными (комплексными) коэффициентами система многочленов 1, х, х2, … , хn Является максимальной линейно независимой.

5. Во множестве всех многочленов с действительными (комплексными) коэффициентами примерами максимальной линейно независимой системы являются

а) 1, х, х2, … , хn, … ;

б) 1, (1 – х ), (1 – х )2, … , (1 – х )N, …

6. Множество матриц размерности M ´ N является линейным пространством (проверьте это). Примером максимальной линейно независимой системы в этом пространстве является система матриц Е11 = , Е12 =, … , Е Mn = .

Пусть дана система векторов С1, с2, … , ср (*). Подсистема векторов из (*) называется Максимальной линейно независимой Подсистемой Системы ( *) , если она линейно независима, но при добавлении к ней любого другого вектора этой система она становится линейно зависимой. Если система (*) конечна, то любая её максимальная линейно независимая подсистема содержит одно и то же число векторов. (Доказательство проведите самостоятельно). Число векторов в максимальной линейно независимой подсистеме системы (*) называется Рангом Этой системы. Очевидно, эквивалентные системы векторов имеют одинаковые ранги.

Линейная зависимость и независимость векторов

Определения линейно зависимой и независимой систем векторов

Определение 22

Пусть имеем систему из n-векторов и имеем набор чисел
, тогда

(11)

называется линейной комбинацией данной системы векторов с данным набором коэффициентов.

Определение 23

Система векторов
называется линейно зависимой, если существует такой набор коэффициентов
, из которых хотя бы один не равен нулю, что линейная комбинация данной системы векторов с этим набором коэффициентов равна нулевому вектору:

Пусть
, тогда

Определение 24 (через представление одного вектора системы в виде линейной комбинации остальных)

Система векторов
называется линейно зависимой, если хотя бы один из векторов этой системы можно представить в виде линейной комбинации остальных векторов этой системы.

Утверждение 3

Определения 23 и 24 эквивалентны.

Определение 25 (через нулевую линейную комбинацию)

Система векторов
называется линейно независимой, если нулевая линейная комбинация этой системы возможна лишь при всех
равных нулю.

Определение 26 (через невозможность представления одного вектора системы в виде линейной комбинации остальных)

Система векторов
называется линейно независимой, если не один из векторов этой системы нельзя представить в виде линейной комбинации других векторов этой системы.

Свойства линейно зависимой и независимой систем векторов

Теорема 2 (нулевой вектор в системе векторов)

Если в системе векторов имеется нулевой вектор, то система линейно зависима.

 Пусть
, тогда .

Получим
, следовательно, по определению линейно зависимой системы векторов через нулевую линейную комбинацию (12) система линейно зависима. 

Теорема 3 (зависимая подсистема в системе векторов)

Если в системе векторов имеется линейно зависимая подсистема, то и вся система линейно зависима.

 Пусть
- линейно зависимая подсистема
, среди которых хотя бы одно не равно нулю:

Значит, по определению 23, система линейно зависима. 

Теорема 4

Любая подсистема линейно независимой системы линейно независима.

 От противного. Пусть система линейно независима и в ней имеется линейно зависимая подсистема. Но тогда по теореме 3 вся система будет также линейно зависимой. Противоречие. Следовательно, подсистема линейно независимой системы не может быть линейно зависимой. 

Геометрический смысл линейной зависимости и независимости системы векторов

Теорема 5

Два вектора и линейно зависимы тогда и только тогда, когда
.

Необходимость.

и - линейно зависимы
, что выполняется условие
. Тогда
, т.е.
.

Достаточность.

Линейно зависимы. 

Следствие 5.1

Нулевой вектор коллинеарен любому вектору

Следствие 5.2

Для того чтобы два вектора были линейно независимы необходимо и достаточно, чтобы был не коллинеарен .

Теорема 6

Для того чтобы система из трёх векторов была линейно зависима необходимо и достаточно, чтобы эти векторы были компланарными.

Необходимость.

- линейно зависимы, следовательно, один вектор можно представить в виде линейной комбинации двух других.

, (13)

где
и
. По правилу параллелограмма есть диагональ параллелограмма со сторонами
, но параллелограмм – плоская фигура
компланарны
- тоже компланарны.

Достаточность .

- компланарны. Приложим три вектора к точке О:

C

B`

– линейно зависимы 

Следствие 6.1

Нулевой вектор компланарен любой паре векторов.

Следствие 6.2

Для того чтобы векторы
были линейно независимы необходимо и достаточно, чтобы они были не компланарны.

Следствие 6.3

Любой вектор плоскости можно представить в виде линейной комбинации любых двух неколлинеарных векторов этой же плоскости.

Теорема 7

Любые четыре вектора в пространстве линейно зависимы.

 Рассмотрим 4 случая:

Проведем плоскость через векторы , затем плоскость через векторы и плоскость через векторы . Затем проведем плоскости, проходящие через точку D, параллельные парам векторов ; ; соответственно. По линиям пересечения плоскостей строим параллелепипед OB 1 D 1 C 1 ABDC .

Рассмотрим OB 1 D 1 C 1 – параллелограмм по построению по правилу параллелограмма
.

Рассмотрим OADD 1 – параллелограмм (из свойства параллелепипеда)
, тогда

EMBED Equation.3 .

По теореме 1
такие, что . Тогда
, и по определению 24 система векторов линейно зависимая. 

Следствие 7.1

Суммой трёх некомпланарных векторов в пространстве является вектор, совпадающий с диагональю параллелепипеда, построенного на этих трёх векторах, приложенных к общему началу, причём начало вектора суммы совпадает с общим началом этих трёх векторов.

Следствие 7.2

Если в пространстве взять 3 некомпланарных вектора, то любой вектор этого пространства можно разложить в линейную комбинацию данных трёх векторов.