Кто открыл магнитное действие тока. Майкл фарадей и рождение физики поля. Монахи на службе науки

22 сентября 2011 года исполнилось 220 лет со дня рождения Майкла Фарадея (1791–1867) - английского физика-экспериментатора, который ввел в науку понятие «поле» и заложил основы концепции о физической реальности электрических и магнитных полей. В наши дни понятие поля известно любому старшекласснику. Начальные сведения об электрических и магнитных полях и способах их описания при помощи силовых линий, напряженностей, потенциалов и т. п. давно вошли в школьные учебники по физике. В этих же учебниках можно прочитать о том, что поле - это особая форма материи, принципиально отличная от вещества. Но вот с объяснением того, в чем именно состоит эта «особость», возникают серьезные трудности. Естественно, винить в этом авторов учебников нельзя. Ведь если поле не сводимо к каким-то другим, более простым сущностям, то тут и объяснять нечего. Надо просто принять физическую реальность поля как экспериментально установленный факт и научиться работать с уравнениями, описывающими поведение этого объекта. К этому, например, призывает в своих «Лекциях» Ричард Фейнман, отметив, что ученые долгое время пытались объяснить электромагнитное поле при помощи различных механических моделей, но потом оставили эту затею и сочли, что физический смысл имеет лишь описывающая поле система знаменитых уравнений Максвелла.

Означает ли сказанное, что мы должны полностью отказаться от попыток понять, что такое поле? Думается, что существенную помощь в ответе на этот вопрос может оказать знакомство с «Экспериментальными исследованиями по электричеству» Майкла Фарадея - грандиозным трехтомным трудом, который гениальный экспериментатор создавал более 20 лет . Именно здесь Фарадей вводит понятие поля и шаг за шагом разрабатывает идею о физической реальности этого объекта. При этом важно отметить, что «Экспериментальные исследования» Фарадея - одна из величайших книг в истории физики - написаны прекрасным языком, не содержат ни единой формулы и вполне доступны школьникам.

Введение поля. Фарадей, Томсон и Максвелл

Термин «поле» (точнее: «магнитное поле», «поле магнитных сил») был введен Фарадеем в 1845 году в ходе исследований явления диамагнетизма (термины «диамагнетизм» и «парамагнетизм» также были введены Фарадеем) - обнаруженного ученым эффекта слабого отталкивания магнитом ряда веществ. Первоначально поле рассматривалось Фарадеем как сугубо вспомогательное понятие, по сути координатная сетка, образованная магнитными силовыми линиями и использовавшаяся при описании характера движения тел вблизи магнитов. Так, кусочки диамагнитных веществ, например висмута, перемещались из областей сгущения силовых линий в области их разрежения и располагались перпендикулярно направлению линий.

Несколько позже, в 1851–1852 годах, при математическом описании результатов некоторых экспериментов Фарадея, термин «поле» эпизодически использовал английский физик Уильям Томсон (1824–1907). Что же касается создателя теории электромагнитного поля Джеймса Клерка Максвелла (1831–1879), то в его работах термин «поле» поначалу тоже практически не встречается и используется лишь для обозначения той части пространства, в которой можно обнаружить магнитные силы. Только в опубликованной в 1864–1865 годах работе «Динамическая теория электромагнитного поля», в которой впервые появляется система «уравнений Максвелла» и предсказывается возможность существования электромагнитных волн, распространяющихся со скоростью света, о поле говорится как о физической реальности.

Такова вкратце история введения в физику понятия «поле». Из нее видно, что первоначально это понятие рассматривалось как сугубо вспомогательное, обозначавшее просто ту часть пространства (она может быть и неограниченной), в которой можно обнаружить магнитные силы и изобразить их распределение при помощи силовых линий. (Термин «электрическое поле» стал использоваться только после создания Максвеллом теории электромагнитного поля.)

Важно подчеркнуть, что ни силовые линии, известные физикам до Фарадея, ни «состоящее» из них поле не рассматривались (и не могли рассматриваться!) научным сообществом XIX века как физическая реальность. Попытки же Фарадея говорить о материальности силовых линий (или Максвелла - о материальности поля) воспринимались учеными как совершенно ненаучные. Даже Томсон, старый друг Максвелла, сам много сделавший для разработки математических основ физики поля (именно Томсон, а не Максвелл, первым показал возможность «перевода» языка силовых линий Фарадея на язык дифференциальных уравнений в частных производных), называл теорию электромагнитного поля «математическим нигилизмом» и долгое время отказывался ее признавать. Понятно, что поступать подобным образом Томсон мог, лишь имея на то очень серьезные основания. И такие основания у него были.

Поле сил и сила Ньютона

Причина, по которой Томсон не мог признать реальность силовых линий и полей, проста. Силовые линии электрического и магнитного полей определяются как непрерывные линии, проведенные в пространстве так, что касательные к ним в каждой точке указывают направления действующих в этой точке электрических и магнитных сил. Величины и направления этих сил вычисляются при помощи законов Кулона, Ампера и Био–Савара–Лапласа. Однако в основе этих законов лежит принцип дальнодействия, допускающий возможность мгновенной передачи на любое расстояние действия одного тела на другое и, тем самым, исключающий существование каких-либо материальных посредников между взаимодействующими зарядами, магнитами и токами.

Следует отметить, что многие ученые со скепсисом относились к принципу, по которому тела каким-то загадочным образом могут действовать там, где их нет. Даже Ньютон, который первым использовал этот принцип при выводе закона всемирного тяготения, полагал, что между взаимодействующими телами может существовать какая-то субстанция. Но строить гипотезы о ней ученый не пожелал, предпочитая заниматься разработкой математических теорий законов, опирающихся на твердо установленные факты. Аналогичным образом поступали и последователи Ньютона. По словам Максвелла, они буквально «вымели из физики» всевозможные невидимые атмосферы и истечения, которыми в XVIII веке окружали магниты и заряды сторонники концепции близкодействия. Тем не менее в физике XIX века постепенно начинает возрождаться интерес к, казалось бы, навсегда забытым идеям.

Одной из важнейших предпосылок этого возрождения стали проблемы, возникавшие при попытках объяснения новых явлений - прежде всего, явлений электромагнетизма - на основе принципа дальнодействия. Эти объяснения становились всё более искусственными. Так, в 1845 году немецкий физик Вильгельм Вебер (1804–1890) обобщил закон Кулона, введя в него члены, определяющие зависимость силы взаимодействия электрических зарядов от их относительных скоростей и ускорений. Физический смысл такой зависимости был непонятен, а веберовские добавки в закон Кулона явно носили характер гипотезы, введенной, чтобы объяснить явления электромагнитной индукции.

В середине XIX века физики всё более осознавали, что при изучении явлений электричества и магнетизма эксперимент и теория начинают говорить на разных языках. В принципе, ученые были готовы согласиться с идеей о существовании субстанции, передающей взаимодействие между зарядами и токами с конечной скоростью, однако принять идею о физической реальности поля они не могли. В первую очередь, из-за внутренней противоречивости этой идеи. Дело в том, что в физике Ньютона сила вводится как причина ускорения материальной точки. Ее (силы) величина равна, как известно, произведению массы этой точки на ускорение. Тем самым, сила как физическая величина определяется в точке и в момент ее действия. «Сам Ньютон напоминает нам, - писал Максвелл, - что сила существует только до тех пор, пока она действует; ее действие может сохраниться, но сама сила как таковая по существу явление преходящее».

Пытаясь рассматривать поле не как удобную иллюстрацию характера распределения сил в пространстве, а как физический объект, ученые входили в противоречие с тем исходным пониманием силы, на основе которого этот объект был построен. В каждой своей точке поле определяется величиной и направлением силы, действующей на пробное тело (заряд, магнитный полюс, виток с током). По сути, поле «состоит» только из сил, но сила в каждой точке рассчитывается на основе законов, согласно которым говорить о поле как физическом состоянии или процессе бессмысленно. Поле, рассматриваемое как реальность, означало бы реальность сил, существующих вне всякого действия, что полностью противоречило исходному определению силы. Максвелл писал, что в случаях, когда мы говорим о «сохранении силы» и т. п., лучше было бы пользоваться термином «энергия». Это, безусловно, правильно, но энергией чего является энергия поля? К тому времени, когда Максвелл писал приведенные выше строки, он уже знал, что плотность энергии, например, электрического поля пропорциональна квадрату напряженности этого поля, т. е. опять-таки силы, распределенной в пространстве.

С ньютоновским пониманием силы неразрывно связана и концепция мгновенного дальнодействия. Ведь если одно тело действует на другое, удаленное, не мгновенно (по сути, уничтожая расстояние между ними), то нам придется рассматривать силу перемещающейся в пространстве и решать вопрос о том, какая «часть» силы вызывает наблюдаемое ускорение и какой смысл тогда имеет понятие «сила». Либо мы должны допустить, что движение силы (или поля) происходит каким-то особым, не укладывающимся в рамки ньютоновской механики образом.

В 1920 году в статье «Эфир и теория относительности» Альберт Эйнштейн (1879–1955) писал, что, говоря об электромагнитном поле как реальности, мы должны допустить существование особого физического объекта, который принципиально нельзя представить состоящим из частиц, поведение каждой из которых поддается изучению во времени. Позже Эйнштейн охарактеризовал создание теории электромагнитного поля как величайший, со времен Ньютона, переворот в наших взглядах на структуру физической реальности. Благодаря этому перевороту, в физику наряду с представлениями о взаимодействии материальных точек вошли представления о полях, как ни к чему другому не сводимым сущностям.

Но как оказалось возможным это изменение взглядов на реальность? Как физике удалось выйти за свои границы и «увидеть» то, что для нее раньше как реальность просто не существовало?

Исключительно важную роль в подготовке этого переворота сыграли многолетние эксперименты Фарадея с силовыми линиями. Благодаря Фарадею, эти хорошо известные физикам линии превратились из способа изображения распределения в пространстве электрических и магнитных сил в своеобразный «мостик», двигаясь по которому удалось проникнуть в мир, находящийся как бы «за силой», в мир, в котором силы становились проявлениями свойств полей. Понятно, что такое превращение потребовало таланта совершенно особого рода, таланта, которым обладал Майкл Фарадей.

Великий Экспериментатор

Майкл Фарадей родился 22 сентября 1791 года в семье лондонского кузнеца, которая из-за недостатка средств не смогла дать своим детям образования. Майкл - третий ребенок в семье - не закончил и начальной школы и в 12 лет был отдан учеником в переплетную мастерскую. Там он получил возможность читать множество книг, в том числе и научно-популярных, восполняя пробелы своего образования. Вскоре Фарадей начал посещать публичные лекции, которые регулярно устраивали в Лондоне для распространения знаний среди широких слоев населения.

В 1812 году один из членов Лондонского Королевского общества, регулярно пользовавшийся услугами переплетной мастерской, пригласил Фарадея послушать лекции известного физика и химика Гемфри Дэви (1778–1829). Этот момент стал в жизни Фарадея переломным. Юноша окончательно увлекся наукой, а поскольку заканчивался срок его обучения в мастерской, Фарадей рискнул написать Дэви о своем желании заняться исследованиями, приложив к письму тщательно переплетенные конспекты лекций ученого. Дэви, который сам был сыном бедного резчика по дереву, не только ответил на письмо Фарадея, но и предложил ему место ассистента в Лондонском Королевском институте. Так началась научная деятельность Фарадея, продолжавшаяся почти до самой его смерти, наступившей 25 августа 1867 года.

История физики знает немало выдающихся экспериментаторов, но, пожалуй, только Фарадея называли Экспериментатором с большой буквы. И дело не только в его колоссальных достижениях, среди которых открытия законов электролиза и явлений электромагнитной индукции, исследования свойств диэлектриков и магнетиков и многое другое. Нередко важные открытия удавалось сделать более или менее случайно. О Фарадее сказать такое невозможно. Его исследования всегда отличались поразительной планомерностью и целеустремленностью. Так, в 1821 году Фарадей записал в рабочем дневнике, что начинает поиски связи магнетизма с электричеством и оптикой. Первую связь он обнаружил через 10 лет (открытие электромагнитной индукции), а вторую - через 23 года (открытие вращения плоскости поляризации света в магнитном поле).

В «Экспериментальных исследованиях по электричеству» Фарадея имеется около 3500 параграфов, многие из которых содержат описания проделанных им опытов. И это только то, что Фарадей счел нужным опубликовать. В многотомных «Дневниках» Фарадея, которые он вел с 1821 года, описано около 10 тысяч опытов, причем многие из них ученый поставил без чьей-либо помощи. Интересно, что в 1991 году, когда научный мир отмечал 200-летие со дня рождения Фарадея, английские историки физики решили повторить некоторые из его наиболее знаменитых опытов. Но даже на простое воспроизведение каждого из таких опытов коллективу современных специалистов потребовалось не менее дня работы.

Говоря о заслугах Фарадея, можно сказать, что его главным достижением стало превращение экспериментальной физики в самостоятельную область исследований, результаты которых нередко могут на многие годы опережать развитие теории. Фарадей считал крайне непродуктивным стремление многих ученых как можно быстрее переходить от полученных в экспериментах данных к их теоретическому обобщению. Более плодотворным Фарадею представлялось сохранение длительной связи с изучаемыми явлениями, чтобы иметь возможность детально проанализировать все их особенности, вне зависимости от того, соответствуют эти особенности принятым теориям или нет.

Этот подход к анализу опытных данных Фарадей распространил и на хорошо известные опыты по выстраиванию железных опилок вдоль силовых линий магнитного поля. Безусловно, ученый прекрасно знал, что узоры, которые образуют железные опилки, легко можно объяснить на основе принципа дальнодействия. Тем не менее, Фарадей считал, что в данном случае экспериментаторы должны исходить не из придуманных теоретиками концепций, а из явлений, свидетельствующих, по его мнению, о существовании в пространстве, окружающем магниты и токи, неких обладающих готовностью к действию состояний. Другими словами, силовые линии, по мнению Фарадея, указывали на то, что сила должна мыслиться не только как действие (на материальную точку), но и как способность к действию.

Важно подчеркнуть, что, следуя своей методике, Фарадей не пытался выдвигать какие-либо гипотезы о природе этой способности к действию, предпочитая постепенно накапливать опыт в ходе работы с силовыми линиями. Начало этой работе было положено в его исследованиях явлений электромагнитной индукции.

Затянувшееся открытие

Во многих учебниках и справочниках можно прочитать о том, что 29 августа 1831 года Фарадей открыл явление электромагнитной индукции. Историкам науки хорошо известно, что датировка открытий - вещь сложная и часто весьма запутанная. Не составляет исключение и открытие электромагнитной индукции. Из «Дневников» Фарадея известно, что это явление он наблюдал еще в 1822 году во время опытов с двумя проводящими контурами, надетыми на сердечник из мягкого железа. Первый контур был подключен к источнику тока, а второй - к гальванометру, который зафиксировал возникновение кратковременных токов при включении или отключении тока в первом контуре. Позже выяснилось, что подобные явления наблюдали и другие ученые, но, как и поначалу Фарадей, сочли их погрешностью эксперимента.

Дело в том, что в поисках явлений порождения электричества магнетизмом ученые были нацелены на обнаружение устойчивых эффектов, подобных, например, открытому Эрстедом в 1818 году явлению магнитного действия тока. От этой всеобщей «слепоты» Фарадея спасли два обстоятельства. Во-первых, пристальное внимание к любым явлениям природы. В своих статьях Фарадей сообщал как об удачных, так и о неудачных экспериментах, полагая, что неудачный (не обнаруживший искомый эффект), но осмысленно поставленный опыт тоже содержит какую-то информацию о законах природы. Во-вторых, незадолго до открытия Фарадей много экспериментировал с разрядами конденсаторов, что, несомненно, обострило его внимание к кратковременным эффектам. Регулярно просматривая свои дневники (для Фарадея это было постоянной составляющей исследований), ученый, судя по всему, по-новому взглянул на опыты 1822 года и, воспроизведя их, осознал, что имеет дело не с помехами, а с искомым явлением. Датой этого осознания и стало 29 августа 1831 года.

Далее начались интенсивные исследования, в ходе которых Фарадей открыл и описал основные явления электромагнитной индукции, включая возникновение индукционных токов при относительном движении проводников и магнитов. На основании этих исследований Фарадей пришел к выводу о том, что решающим условием возникновения индукционных токов является именно пересечение проводником линий магнитной силы, а не переход в области больших или меньших сил. При этом, например, возникновение тока в одном проводнике при включении тока в другом, расположенном рядом, Фарадей тоже объяснял как результат пересечения проводником силовых линий: «магнитные кривые как бы движутся (если можно так выразиться) поперек индуцируемого провода, начиная с момента, когда они начинают развиваться, и вплоть до момента, когда магнитная сила тока достигнет наибольшего значения; они как бы распространяются в стороны от провода и, следовательно, оказываются по отношению к неподвижному проводу в том же положении, как если бы он двигался в противоположном направлении поперек них».

Обратим внимание на то, сколько раз в приведенном отрывке Фарадей использует слова «как бы», а также на то, что у него пока нет привычной нам количественной формулировки закона электромагнитной индукции: сила тока в проводящем контуре пропорциональна скорости изменения числа магнитных силовых линий, проходящих через этот контур. Близкая к этой формулировка появляется у Фарадея лишь в 1851 году, причем она относится только к случаю движения проводника в статическом магнитном поле. По Фарадею, если проводник перемещается в таком поле с постоянной скоростью, то сила возникающего в нем электрического тока пропорциональна этой скорости, а количество приводимого в движение электричества пропорционально числу пересекаемых проводником силовых линий магнитного поля.

Осторожность Фарадея при формулировке закона электромагнитной индукции обусловлена, прежде всего, тем, что корректно пользоваться понятием силовой линии он мог только применительно к статическим полям. В случае же переменных полей это понятие приобретало метафорический характер, и непрерывные оговорки «как бы», когда речь идет о движущихся силовых линиях, показывают, что Фарадей это прекрасно понимал. Он также не мог не считаться с критикой тех ученых, которые указывали ему на то, что силовая линия - это, строго говоря, геометрический объект, говорить о движении которого просто бессмысленно. Кроме того, в опытах мы имеем дело с заряженными телами, проводниками с током и т. д., а не с абстракциями вроде силовых линий. Поэтому Фарадей должен был показать, что при изучении хотя бы некоторых классов явлений нельзя ограничиться рассмотрением проводников с током и не учитывать окружающее их пространство. Так, в работе, посвященной исследованиям явлений самоиндукции, ни разу не упомянув силовые линии, Фарадей выстраивает рассказ о проделанных им экспериментах таким образом, что читатель постепенно сам приходит к выводу о том, что подлинная причина наблюдаемых явлений - не проводники с током, а нечто, находящееся в окружающем их пространстве.

Поле как предчувствие. Исследования явлений самоиндукции

В 1834 году Фарадей опубликовал девятью часть «Экспериментальных исследований», которая называлась «Об индуктивном влиянии электрического тока на самого себя и об индуктивном действии токов вообще». В этой работе Фарадей исследовал явления самоиндукции, открытые в 1832 году американским физиком Джозефом Генри (1797–1878), и показал, что они представляют частный случай изученных им ранее явлений электромагнитной индукции.

Свою работу Фарадей начинает с описания ряда явлений, состоящих в том, что при размыкании электрической цепи, содержащей длинные проводники или обмотку электромагнита, в точке разрыва контакта возникает искра или ощущается удар током, если контакт разъединяют руками. В то же время, указывает Фарадей, если проводник короткий, то никакими ухищрениями получить искру или электрический удар не удается. Тем самым выяснилось, что возникновение искры (или удара) зависит не столько от силы тока, протекавшего по проводнику до разрыва контакта, сколько от длины и конфигурации этого проводника. Поэтому Фарадей в первую очередь стремится показать, что, хотя исходной причиной искры является ток (если в цепи его не было вообще, то никакой искры, естественно, не будет), сила тока решающего значения не имеет. Для этого Фарадей описывает последовательность экспериментов, в которых длина проводника сначала увеличивается, что приводит к усилению искры, несмотря на ослабление тока в цепи из-за увеличения сопротивления. Затем этот проводник перекручивают так, чтобы ток протекал только через его небольшую часть. Сила тока при этом резко возрастает, но искра при размыкании цепи исчезает. Таким образом, ни проводник сам по себе, ни сила тока в нем не могут рассматриваться как причина искры, величина которой, как выясняется, зависит не только от длины проводника, но и от его конфигурации. Так, при сворачивании проводника в спираль, а также при введении в эту спираль железного сердечника величина искры тоже возрастает.

В продолжение изучения этих явлений Фарадей подключил параллельно месту размыкания контакта вспомогательный короткий проводник, сопротивление которого значительно больше, чем у основного проводника, но меньше, чем у искрового промежутка или у тела человека, размыкающего контакт. В результате искра при размыкании контакта исчезла, а во вспомогательном проводнике возник сильный кратковременный ток (Фарадей называет его экстратоком), направление которого оказалось противоположным направлению тока, который протекал бы через него от источника. «Эти опыты, - пишет Фарадей, - устанавливают существенное различие между первичным, или возбуждающим, током и экстратоком в отношении количества, интенсивности и даже направления; они привели меня к заключению, что экстраток тождествен с описанным мной ранее индуцированным током».

Выдвинув идею о связи изучаемых явлений с явлениями электромагнитной индукции, Фарадей далее поставил ряд остроумных экспериментов, подтверждающих эту идею. В одном из таких экспериментов рядом со спиралью, подключенной к источнику тока, помещалась другая спираль, разомкнутая. При отключении от источника тока первая спираль давала сильную искру. Однако если концы другой спирали замыкались, искра практически исчезала, а во второй спирали возникал кратковременный ток, направление которого совпадало с направлением тока в первой спирали, если цепь размыкали, и было противоположно ему, если цепь замыкали.

Установив связь двух классов явлений, Фарадей смог легко объяснить выполненные ранее опыты, а именно усиление искры при удлинении проводника, сворачивании его в спираль, введении в нее железного сердечника и т. д.: «Если наблюдать индуктивное действие провода длиной в один фут на расположенный рядом провод длиной также в один фут, то оно оказывается очень слабым; но если тот же самый ток пропустить через провод длиной в пятьдесят футов, то он будет индуцировать в соседнем пятидесятифутовом проводе в момент замыкания или размыкания контакта значительно более сильный ток, как будто каждый лишний фут провода вносит нечто в суммарное действие; по аналогии мы заключаем, что такое же явление должно иметь место и тогда, когда соединительный проводник служит одновременно проводником, в котором образуется индуцированный ток». Поэтому, делает вывод Фарадей, увеличение длины проводника, сворачивание его в спираль и введение в нее сердечника усиливает искру. К действию одного витка спирали на другой прибавляется действие размагничивающегося сердечника. При этом совокупность таких действий может и компенсировать друг друга. Например, если сложить вдвое длинный изолированный провод, то из-за противоположности индуктивных действий двух его половин искра исчезнет, хотя в распрямленном состоянии этот провод дает сильную искру. К существенному ослаблению искры приводила и замена сердечника из железа на сердечник из стали, которая размагничивается очень медленно.

Итак, проводя читателя через детальные описания совокупностей проделанных экспериментов, Фарадей, не говоря ни слова о поле, формировал у него, читателя, представление о том, что решающая роль в изучаемых явлениях принадлежит не проводникам с током, а создаваемому ими в окружающем пространстве какому-то состоянию намагниченности, точнее - скорости изменения этого состояния. Однако вопрос о том, существует ли это состояние реально и может ли оно быть предметом экспериментальных исследований, оставался открытым.

Проблема физической реальности силовых линий

Существенный шаг в доказательстве реальности силовых линий Фарадею удалось сделать в 1851 году, когда он пришел к идее обобщения понятия силовой линии. «Магнитную силовую линию, - писал Фарадей, - можно определить как линию, которую описывает небольшая магнитная стрелка, когда ее перемещают в ту или иную сторону по направлению ее длины, так что стрелка все время остается касательной к движению; или, иначе, это та линия, вдоль которой можно в любую сторону перемещать поперечный провод и в последнем не появится никакого стремления к возникновению какого-нибудь тока, между тем как при перемещении его в любом ином направлении такое стремление существует».

Силовая линия, таким образом, определялась Фарадеем на основе двух различных законов (и пониманий) действия магнитной силы: ее механического действия на магнитную стрелку и ее способности (в соответствии с законом электромагнитной индукции) порождать электрическую силу. Это двойное определение силовой линии как бы «материализовало» ее, придавало ей смысл особых, экспериментально обнаруживаемых направлений в пространстве. Поэтому Фарадей назвал такие силовые линии «физическими», полагая, что теперь сможет окончательно доказать их реальность. Проводник в таком двойном определении можно было представить замкнутым и скользящим вдоль силовых линий так, чтобы, постоянно деформируясь, он не пересекал линий. Этот проводник выделил бы некоторое условное «количество» линий, сохраняющихся при их «сгущении» или «разрежении». Такое скольжение проводника в поле магнитных сил без возникновения в нем электрического тока могло бы рассматриваться как экспериментальное доказательство сохранения количества силовых линий при их «распространении», например из полюса магнита, и, тем самым, как доказательство реальности этих линий.

Безусловно, реальный проводник практически невозможно перемещать так, чтобы он не пересекал силовые линии. Поэтому гипотезу о сохранении их количества Фарадей обосновывал иначе. Пусть магнит с полюсом N и проводник abcd расположены так, что могут вращаться по отношению друг к другу вокруг оси ad (рис. 1; рисунок выполнен автором статьи на основе рисунков Фарадея). При этом часть проводника ad проходит через отверстие в магните и имеет свободный контакт в точке d . Свободный контакт сделан и в точке c , так что участок bc может вращаться вокруг магнита, не разрывая электрической цепи, подключенной в точках a и b (тоже посредством скользящих контактов) к гальванометру. Проводник bc при полном повороте вокруг оси ad пересекает все силовые линии, выходящие из полюса магнита N. Пусть теперь проводник вращается с постоянной скоростью. Тогда, сравнивая показания гальванометра при различных положениях вращающегося проводника, например в положении abcd и в положении ab"c"d , когда проводник за полный оборот вновь пересекает все силовые линии, но уже в местах их большей разреженности, можно обнаружить, что показания гальванометра одинаковы. По мнению Фарадея, это свидетельствует о сохранении некоторого условного количества силовых линий, которым можно охарактеризовать северный полюс магнита (чем больше это «количество», тем сильнее магнит).

Вращая в своей установке (рис. 2; рисунок Фарадея) не проводник, а магнит, Фарадей приходит к выводу о сохранении количества силовых линий во внутренней области магнита. При этом в основе его рассуждений лежит предположение о том, что силовые линии не увлекаются вращающимся магнитом. Эти линии остаются «на месте», а магнит вращается среди них. В этом случае ток по величине получается таким же, как при вращении внешнего проводника. Фарадей объясняет этот результат тем, что, хотя внешняя часть проводника не пересекает линий, его внутренняя часть (cd ), вращающаяся вместе с магнитом, пересекает все линии, проходящие внутри магнита. Если же внешнюю часть проводника закрепить и вращать вместе с магнитом, то ток не возникает. Это тоже можно объяснить. Действительно, внутренняя и внешняя части проводника пересекают одно и то же количество силовых линий, направленных в одном направлении, поэтому токи, индуцируемые в обеих частях проводника, компенсируют друг друга.

Из экспериментов следовало, что внутри магнита силовые линии идут не от северного полюса к южному, а наоборот, образуя с внешними силовыми линиями замкнутые кривые, что позволило Фарадею сформулировать закон сохранения количества магнитных силовых линий во внешнем и внутреннем пространствах постоянного магнита: «Этим поразительным распределением сил, которое выявляется с помощью движущегося проводника, магнит в точности походит на электромагнитную катушку как по тому, что силовые линии протекают в виде замкнутых кругов, так и по равенству их суммы внутри и снаружи». Тем самым, понятие «количество силовых линий» получало права гражданства, благодаря чему формулировка закона пропорциональности электродвижущей силы индукции количеству силовых линий, пересекаемых проводником в единицу времени, приобретала физический смысл.

Однако Фарадей признавал, что полученные им результаты не являются окончательным доказательством реальности силовых линий. Для такого доказательства, писал он, надо «установить отношение силовых линий ко времени», т. е. показать, что эти линии могут перемещаться в пространстве с конечной скоростью и, следовательно, могут быть обнаружены какими-либо физическими методами.

Важно подчеркнуть, что проблема «физических силовых линий» не имела для Фарадея ничего общего с попытками непосредственного обнаружения обычных силовых линий. Со времени открытия электромагнитной индукции Фарадей верил, что и обычные силовые линии, и законы электромагнетизма - это проявления каких-то особых свойств материи, ее особого состояния, которое ученый назвал электротоническим. При этом вопрос о сущности этого состояния и его связи с известными формами материи являлся, считал Фарадей, открытым: «Каково это состояние и от чего оно зависит, мы сейчас не можем сказать. Может быть, оно обусловлено эфиром, подобно световому лучу... Может быть, это - состояние напряжения, или состояние колебания, или еще какое-либо состояние, аналогичное электрическому току, с которым так тесно связаны магнитные силы. Необходимо ли для поддержания этого состояния присутствие материи, зависит от того, что понимать под словом «материя». Если понятие материи ограничить весомыми или тяготеющими веществами, тогда присутствие материи столь же мало существенно для физических линий магнитной силы, как для лучей света и теплоты. Но если, допуская эфир, мы примем, что это - род материи, тогда силовые линии могут зависеть от каких-либо ее действий».

Столь пристальное внимание, которое Фарадей уделял силовым линиям, было обусловлено в первую очередь тем, что он видел в них мостик, ведущий в какой-то совершенно новый мир. Однако пройти по этому мостику было трудно даже такому гениальному экспериментатору, как Фарадей. Собственно, эта задача вообще не допускала чисто экспериментального решения. Однако в пространство между силовыми линиями можно было попытаться проникнуть математически. Именно это и сделал Максвелл. Его знаменитые уравнения стали тем инструментом, который позволил проникнуть в несуществующие промежутки между силовыми линиями Фарадея и, в результате, обнаружить там новую физическую реальность. Но это уже другая история - история о Великом Теоретике.

Имеется в виду книга Р. Фейнмана, Р. Лейтона и М. Сэндса «Фейнмановские лекции по физике» (М.: Мир, 1967) (Прим. ред. )
В русском переводе первый том этой книги вышел в 1947 году, второй - в 1951, а третий - в 1959 году в серии «Классики науки» (М.: Издательство АН СССР). (Прим. ред. )
В 1892 году Уильям Томсон был удостоен дворянского титула «лорд Кельвин» за фундаментальные работы в различных областях физики, в частности по прокладке трансатлантического кабеля, связавшего Англию и США.

Исследовать магнитное действие электрического тока начинают после открытия датским ученым Хансом Кристианом Эрстедом (1777-1851) действия электрического тока на магнитную стрелку. Уже задолго до открытия Эрстеда были известны факты, указывающие на существование связи между электричеством и магнетизмом. Еще в XVII в. были известны случаи перемагничения стрелки компаса во время ударов молнии. В XVIII в. после установления электрической природы молнии были сделаны попытки намагнитить железо, пропуская через него разряд лейденской банки, а позже - ток от гальванической батареи. Однако эти попытки не привели к каким-либо определенным результатам. Впервые доказал связь между электрическими и магнитными явлениями Эрстед в 1819 г. Полученный результат оказался неожиданным для всех, в том числе и для него самого. Неожиданным был сам характер связи, а не факт ее существования. Эрстед гораздо раньше был глубоко уверен в наличии связи между электрическими и магнитными явлениями и надеялся изучить ее характер. Уже в 1807 г. он предполагал исследовать действие электричества на магнитную стрелку 1 , но не смог выполнить свое намерение. Уверенность в наличии связи между электрическими и магнитными явлениями была связана у Эрстеда с его общими философскими взглядами на явления природы. Несмотря на разнообразие окружающих явлений, он полагал, что между ними имеются глубокие связи и единство. В одном из своих последних сочинений Эрстед писал: «глубоко проникающий взгляд открывает нам во всем ее многообразии замечательное единство» 2 . Эрстед верил, что между электрическими, тепловыми, световыми, химическими, а также и магнитными явлениями должны существовать связи, раскрыть которые - задача науки. На возникновение у Эрстеда этих идей оказали определенное влияние натурфилософские взгляды Шеллинга, в которых также утверждалось единство электрических, магнитных и химических «сил». Можно также упомянуть малоизвестного венгерского ученого Винтерла, утверждавшего, что все силы природы возникают из единого источника. Его работы были известны Эрстеду, а сам Винтерл знал последнего и даже посвятил ему одно из своих сочинений 3 . Вот как сам Эрстед описал историю своего открытия:

«Так как я уже давно рассматривал силы, проявляющиеся в электрических явлениях всеобщими природными силами, то я должен был отсюда вывести и магнитные действия. Я высказал поэтому гипотезу, что электрические силы, когда они находятся в сильно связанном состоянии, должны оказывать на магнит некоторое действие.

Я не мог тогда проделать опыт для проверки, так как совершал путешествие и внимание мое было занято целиком разработкой химической системы 4 .

Ханс Кристиан Эрстед

Открытие Эрстеда, сделанное им в 1819 г. и опубликованное в 1820 г., заключалось в следующем. Эрстед обнаружил, что если возле магнитной стрелки поместить прямолинейный проводник, направление которого совпадает с направлением магнитного меридиана, и пропустить через него электрический ток, то магнитная стрелка отклоняется. Величину момента силы, действующего на магнитную стрелку под влиянием электрического тока, Эрстед не определил. Он только отметил, что угол, на который отклоняется стрелка под действием тока, зависит от расстояния между ней и током, а также, говоря современным языком, от силы тока (во времена Эрстеда еще не было твердо установлено понятие силы тока).

Теоретические соображения Эрстеда по поводу сделанного им открытия не отличались достаточной ясностью. Он говорил, что в окружающих точках пространства возникает «электрический конфликт», который имеет вокруг проводника вихревой характер. Статью, в которой впервые сообщалось об этом открытии, Эрстед называет «Опыты, относящиеся к действию электрического конфликта на магнитную стрелку».


Андре Мари Ампер

Открытие Эрстеда вызвало большой интерес и послужило толчком к новым исследованиям. В том же 1820 г. были получены новые результаты. Так, Араго показал, что проводник с током действует на железные предметы, которые при этом намагничиваются. Французские физики Био и Савар установили закон действия прямолинейного проводника с током на магнитную стрелку. Поместив магнитную стрелку около прямолинейного проводника с током и наблюдая изменение периода колебаний этой стрелки в зависимости от расстояния до проводника, они установили, что сила, действующая на магнитный полюс со стороны прямолинейного проводника с током, направлена перпендикулярно проводнику и прямой, соединяющей проводник с полюсом, а ее величина обратно пропорциональна этому расстоянию. Этот результат был проанализирован, и после введения понятия элемента тока был установлен закон, известный под названием закона Био - Савара.

Также в 1820 г. был получен новый важный результат в области электромагнетизма французом Андре Мари Ампером (1775-1836). К этому времени Ампер был уже известным ученым, имел ряд трудов по математике, физике и химии. Кроме того, Ампера привлекали биология и геология. Он живо интересовался философией и в конце жизни написал большой труд «Исследование по философским наукам», посвященный вопросу классификации наук. Мировоззрение Ампера формировалось в значительной степени под влиянием французских просветителей и материалистов. Его взгляды на физические явления отличались от взглядов большинства его современников. Он был противником концепции «невесомых». «Разве надо, - говорил Ампер, - для каждой новой группы явлений придумывать специальный флюид?» Ампер очень быстро принял волновую теорию света, которая, по словам Араго, наряду с теорией самого Ампера, объясняющей магнитные явления электрическими, «стала его любимой теорией» 5 . Ампер был противником теории теплорода и считал, что сущность теплоты заключается в движении атомов и молекул. Он даже написал работу, посвященную волновой теории света и теории теплоты. В начале сентября 1820 г. Араго сообщил французским академикам об открытии Эрстеда и вскоре продемонстрировал его опыты на заседании Парижской Академии наук. Ампер чрезвычайно заинтересовался этим открытием. Прежде всего оно натолкнуло его на мысль о возможности сведения магнитных явлений к электрическим и исключении представления о специальной магнитной жидкости. Вскоре Ампер уже докладывал о своих новых гипотезах и говорил об опытах, которые должны их подтвердить. В кратком резюме своего первого доклада Ампер писал:

«Я свел явления, наблюденные г. Эрстедом, к двум о5щим фактам, я показал, что ток, существующий в вольтовом столбе, действует на магнитную стрелку так же, как и ток соединительной проволоки. Я описал опыты, при помощи которых я установил притяжение или отталкивание всей магнитной стрелки под действием соединяющей проволоки. Я описал приборы, которые предполагал соорудить и, между прочим, гальванические винты и спирали. Я указал, что последние будут производить во всех случаях те же действия, что и магниты. Затем я коснулся некоторых подробностей относительно своего воззрения на магниты, согласно которому они обязаны своим свойствам единственно электрическим токам, расположенным в плоскостях, перпендикулярных их оси. Я коснулся также некоторых подробностей относительно подобных же токов, предполагаемых мною в земном шаре. Таким образом, все магнитные явления я свел к чисто электрическим действиям» 6 .

В конце 1820 - начале 1821 г. им было сделано более десяти докладов. В них Ампер сообщал как о своих экспериментальных исследованиях, так и о теоретических соображениях. Ампер показал на опыте взаимодействие двух прямолинейных проводников с током, взаимодействие двух замкнутых токов и т. д. Он также демонстрировал взаимодействие соленоида и магнита; эквивалентное поведение соленоида и магнитной стрелки в поле земного магнетизма и ряд других опытов.

Теоретические выводы Ампера являлись развитием идей, высказанных им в первом сообщении: теперь они были подтверждены опытными исследованиями. Свойства магнита он объяснял наличием в нем токов, а взаимодействие магнитов - взаимодействием этих токов. Сначала Ампер считал эти токи макроскопическими, несколько позже он пришел к гипотезе молекулярных токов. Соответствующую точку зрения Ампер развивает и по вопросу о земном магнетизме, полагая, что внутри Земли протекают токи, которые обусловливают ее магнитное поле.

Теоретические соображения Ампера встретили со стороны некоторых физиков возражения. Не все сразу могли отказаться от существования «магнитного флюида». Кроме того, взгляды Айпера, казалось, не укладывались в общее представление о физических явлениях, в частности, они предполагали наличие сил, зависящих не только от расстояния, но и от движения (от силы тока). Наконец, они могли казаться видоизменением картезианских идей. И действительно, Ампер высказывался в картезианском духе о силах, действующих между электрическими токами. Он писал, что «стремился объяснить ее (силу - Б. С.) реакцией жидкости, разлитой в пространстве, колебание которой вызывает световое явление» 7

Однако такие рассуждения не характерны для Ампера, и его главный труд называется «Теория электродинамических явлений, выведенная исключительно из опыта».

Особенно активным противником теории Ампера был Био, который предложил другое объяснение взаимодействия электрических токов. Он полагал, что когда по проводнику протекает электрический ток, то под его действием хаотично расположенные магнитные диполи, которые имеются в проводнике, определенным образом ориентируются. В результате этого проводник приобретает магнитные свойства и возникают силы, действующие между проводниками, по которым течет электрический ток.

Против этой теории Ампер возражал, основываясь на открытии Фарадеем так называемого электромагнитного вращения. Фарадей с помощью специального прибора (рис. 51) установил факт непрерывного вращения магнита вокруг тока и тока вокруг магнита (1821). Ампер писал:

«Как только было опубликовано открытие первого непрерывного вращательного движения, сделанное Фарадеем, я сразу же увидел, что оно целиком опровергает эту гипотезу, и вот в каких выражениях я изложил мою мысль... Движение, продолжающееся постоянно в одном направлении, несмотря на трение, несмотря на сопротивление среды, и притом движение, вызываемое взаимодействием двух тел, остающихся все время в одном состоянии,- беспримерный факт среди всего, что мы знаем о свойствах неорганической материи. Он доказывает, что действие, исходящее из гальванических проводников, не может быть вызвано особым распределением некоторых жидкостей, находящихся в этих проводниках в состоянии покоя, которому обязаны своим происхождением обыкновенные электрические притяжения и отталкивания. Это действие можно приписать только жидкостям, которые движутся в проводнике, быстро переносясь от одного конца к другому» 8 .

Действительно, ни при каком постоянном расположении силовых центров (каковыми являются магнитные диполи Био) нельзя добиться их непрерывного движения так, чтобы они все время возвращались в первоначальное положение. Иначе опровергался бы принцип невозможности вечного двигателя.

Открыв взаимодействие токов, эквивалентность магнита и соленоида и т. д., а также выдвинув ряд гипотез, Ампер поставил перед собой задачу установить количественные законы этого взаимодействия. Для ее решения естественно было поступить аналогично тему, как поступали в теории тяготения или электростатике, а именно представить взаимодействие конечных проводников с током как результат суммарного взаимодействия бесконечно малых элементов проводников, по которым течет электрический ток, и таким образом свести указанную задачу к нахождению дифференциального закона, определяющего силу взаимодействия между элементами проводников с током или между элементами токов.

Однако эта задача является более трудной, нежели соответствующая задача в теории тяготения или электростатике, так как понятия материальной точки или точечного заряда имеют непосредственный физический смысл и с ними можно было проводить опыт, тогда как элемент электрического тока такого смысла не имел и реализовать его в то время было невозможно. Ампер поступает следующим образом. На основании известных опытных данных он выдвигает гипотезу о том, что сила взаимодействия между элементами проводников с током такова:

где i 1 и i 2 - сила токов, ds 1 и ds 2 - элементы проводников, r - расстояние между элементами, n - некоторое (пока неизвестное) число, Φ (ε, θ 1 , &theta 2 ;) - еще не известная функция углов, определяющих взаимное расположение элементов проводников (рис. 52).

Предположения эти имеют разный характер. Так, предположение о зависимости dF от силы тока следует непосредственно из экспериментов. Предположение, что сила dF должна быть пропорциональна ds 1 и ds 2 , а также некоторой, пока не известной функции углов, также можно рассматривать как следствие, полученное из опытов, хотя и не непосредственно. Предположение о зависимости dF от расстояния между элементами оков основано, безусловно, уже только на предполагаемой аналогии с силами тяготения или силами взаимодействия между электрическими зарядами.

Определить п и выражение функции углов Φ (ε, θ 1 , &theta 2 ;) можно, измерив силы взаимодействия между проводниками с током, различно расположенными друг относительно друга, разной величины и формы. Однако во времена Ампера это сделать было очень трудно, так как рассматриваемые токи были невелики. Ампер вышел из положения, исследовав случаи равновесия проводников с токами различно расположенных и разной формы. В результате он определил n и Φ (ε, θ 1 , &theta 2 ;) и получил окончательный результат для закона взаимодействия элементов токов:

В векторной форме и соответствующих единицах этот закон имеет вид

где dFi3 - сила, действующая на второй элемент тока.

Таким образом, закон, установленный Ампером, отличается от закона взаимодействия двух элементов токов, который в настоящее время называют законом Ампера и выражают формулой

Ошибка, допущенная Ампером, не повлияла на результаты расчетов, так как закон, естественно, применяли для простых случаев определения взаимодействия замкнутых проводников с постоянными токами. В этом случае обе формулы приводят к одному и тому же результату, так как они отличаются друг от друга на величину, которая при интегрировании по замкнутому контуру дает нуль.

В 1826 г. был издан основной труд Ампера «Теория электродинамических явлений, выведенная исключительно из опыта». В этой книге Ампер систематически изложил свои исследования по электродинамике и, в частности, привел вывод закона взаимодействия элементов токов. В заключение обзора работ Ампера следует отметить, что он использовал понятие и* термин «сила тока», а также понятие «напряжение», хотя и не приводил ясной и четкой формулировки этих понятий. Амперу также принадлежит идея создания прибора для измерения силы тока (амперметра). Наконец, следует указать, что Ампер высказал идею электромагнитного телеграфа, которая затем была реализована на практике.

Важным достижением электродинамики первой половины XIX в. было установление законов цепи постоянного тока. Уже в начале XIX в. было высказано предположение, что сила тока (действие тока) в цепи зависит от свойств проводников. Так, Петров элемента тем больше, чем больше поперечное сечение проводников. Несколько позже зависимость химического действия тока.от проводников установил Дэви, который показал, что это действие тем больше, чем короче проводники и чем больше их сечение.


Георг Ом

В середине 20-х годов исследованием цепи постоянного электрического тока занялся немецкий физик Георг Ом (1787-1854). Прежде всего Ом экспериментально установил, что величина электрического тока зависит от длины проводников, их сечения и от числа гальванических элементов, включенных в цепь. Для измерения силы тока Ом использовал простейший гальванометр, представляющий собой крутильные весы, на нити которых была подвешена магнитная стрелка; Под стрелкой располагали проводник, включенный в цепь электрического тока. Когда по проводнику протекал электрический ток, магнитная стрелка отклонялась. Поворачивая головку крутильных весов, приводя стрелку в ее первоначальное положение, Ом измерял момент сил, действующих на маленькую стрелку. Как и Ампер, он считал, что величина этого момента пропорциональна силе тока.


Рис. 53. Прибор Ома (рисунки Ома)

Сначала Ом исследовал зависимость силы тока от длины проводника, включенного в цепь. В качестве источника тока он использовал термоэлемент, состоящий из висмута и меди (рис. 53) Висмутовый стержень bb", имеющий форму буквы П, соединен с медными полосами. Ом нашел, что «сила маг битного действия» тока (сила тока) исследуемого проводника определяется формулой

X=a/(b+x),

где х - длина проводника, а и b - постоянные, причем а зависит от возбуждающей силы термоэлемента (erregende Kraft), а Ь - от особенностей всего остального участка цепи, включая и термоэлемент.

Ом затем установил, что если в цепь включен не один, а m одинаковых источников тока, то «сила магнитного действия тока»

X=ma/(mb+x).

Ом определил также, как зависит сила тока X в проводнике от его длины и поперечного сечения. Он нашел, что

X = kw a/l ,

где k - коэффициент проводимости проводника (Leitungsvermogen), w - поперечное сечение, а l - длина проводника, а - электрическое напряжение на его концах (Electrische Spannung).

Ом исследовал распределение электрического потенциала «электроскопической силы» вдоль однородного проводника с током. Для этого он применял электрометр, который присоединял к различным точкам проводника, когда одна из точек проводника была заземлена. Наконец, Ом попытался теоретически осмыслить обнаруженные им закономерности. Он исходил из представления об электрическом токе как о течении электричества вдоль проводника. Он проводил аналогию между электрическим током и потоком теплоты. Он считал, что, подобно потоку теплоты, электричество течет по проводнику от одного слоя или элемента к другому, близлежащему. Поток теплоты определяется разностью температур в близлежащих слоях стержня, по которому течет эта теплота (т. е. градиентом температуры). Подобно этому, Ом полагает, что поток электричества должен определяться разностью электрической силы в близлежащих сечениях проводника. Он писал:

«Я полагаю, что величина передачи (электричества. - Б. С.) между двумя близлежащими элементами при других равных обстоятельствах пропорциональна разности электрической силы в этих элементах, подобно тому, как в учении о теплоте принимается, что тепловая передача между двумя элементами тепла пропорциональна разности их температур» 9 .

Под электрической силой здесь Ом понимает не напряженность электрического поля, а величину, которую показывает электроскоп, присоединенный к какой-либо точке проводника, если одна из точек гальванической цепи заземлена, т. е. разность потенциалов. Эту величину Ом и называл также «электроскопической силой».

Как часто бывает, аналогия, распространяемая слишком далеко, приводит к ошибкам. Так, Ом из того, что температура пропорциональна количеству теплоты, ошибочно заключил, что и «электроскопическая сила» в проводнике пропорциональна количеству электричества в каждой его точке. Решая задачу о распространении потенциала вдоль цепи тока, Ом полагал, что тем самым находит количество электричества в соответствующих местах проводника.

Закон, открытый Омом и носящий его имя, далеко не сразу получил признание. Еще в 30-х годах по его поводу высказывали сомнения и отмечали ограниченность его применения. Однако в ряде работ различных физиков, применивших более совершенные методы измерения, выводы Ома были подтверждены и его закон получил всеобщее признание. При этом были также исправлены ошибочные представления Ома.

Кирхгоф в работах, относящихся к 1845-1848 гг., уточнил понятие «электроскопической силы». Он установил тождественность понятия этой величины и понятия потенциала в электростатике. Кирхгоф также установил общеизвестные правила для электрических цепей.

Спустя более чем 15 лет после открытия закона Ома был установлен закон, определяющий количество теплоты, выделяемой электрическим током в цепи; он был установлен экспериментально англичанином Джоулем (1843) и независимо от него петербургским академиком Э. X. Ленцем (1844). В настоящее время его называют законом Джоуля - Ленца.

1 См.: Jones В. The Life and Letters of Faraday. Vol. II. London, 1870 p. 395.
2 Oersted H. Ch. Der Geist und der Natur B. 2, MCnchen, 1851, S. 435.
3 Winterl I. Darstellung der vier Bestandtheil der anorganischen Natur. Verna, 1804.
4 Oersted H. Ch. J. Chem. Phys., B. 32, 1821, s. 200-201.
5 Араго Ф. Биографии знаменитых астрономов, физиков и геометров. Т. II. СПб., I860, с. 304.
6 Ампер А. М. Электродинамика. М., Изд-во АН СССР, 1954, с. 410-411.
7 Ампер А. М. Электродинамика, с. 124.
8 Ампер А. М. Электродинамика, с. 127-128.
9 Ohm G. Gesammelte Adhandlungen. Leipzig, 1892, S. 63.

Одним из самых значительных шагов в науке об электричестве и магнетизме по праву можно считать открытие Майклом Фарадеем электромагнитной индукции


Именно на этом явлении основан принцип действия трансформаторов и электрогенераторов, преображающих механическую энергию в электричество

Магниты и магнетизм: магнитное поле возникает при движении электронов в некоторых материалах, а также при прохождении тока через провода или катушки

Опыты Фарадея: изучая электромагнитную индукцию, Фарадей обматывал железное кольцо проводом, подсоединенным к полюсам батареи. Другой провод, охватывающий часть кольца, вел к гальванометру. Внизу — вариант с катушкой и постоянным магнитом

Огромные генераторы, установленные на электростанциях, используют принцип электромагнитной индукции, открытый Фарадеем с помощью маленького железного кольца

Электрические машины. Германия, XIX век


Современные машины, приводимые в движение тем же принципом, могут принимать различные формы, от мощных генераторов и трансформаторов ТЭС в Бранденбурге…


…до поезда, «парящего» над рельсами экспериментальной магистрали в Эмсленде на «магнитной подвеске»

Долгое время природа скрывала от человека свою электромагнитную сущность, поскольку предусмотрела тонкий баланс между электрическими зарядами в окружающем мире, начиная с отдельных атомов и кончая сложными организмами вроде нас с вами. Когда эту загадку удалось разгадать, люди сразу обратили эти силы природы себе на пользу, для чего им пришлось создать новую науку — об электромагнитных свойствах веществ.

В цепи открытий, связанных с исследованием электрических и магнитных явлений в последние три столетия, трудно выбрать самое важное. И создание «лейденской банки», и изобретение электрической батареи, и обнаружение химического, теплового и, наконец, магнитного действия электрического тока были важными этапами в понимании природы электромагнетизма. Кульминацией многочисленных, изящных и трудоемких, хитроумных и простых опытов стало создание теории, заключенной в четырех несложных на первый взгляд уравнениях, известных теперь как уравнения Максвелла. Фактически каждым из этих открытий мы так или иначе пользуемся в нашей повседневной жизни: батарейками, лампочками, электродвигателями, телеграфом и телефоном. Но самым значительным в науке об электричестве и магнетизме по праву можно считать открытие Фарадеем электромагнитной индукции. На этом явлении основан принцип действия трансформаторов и электрогенераторов, преобразующих механическую энергию в электрическую. Открытие электромагнитной индукции больше, чем любое другое научное достижение, способствовало широкому распространению электричества и его доступности, что без преувеличения до неузнаваемости изменило нашу жизнь всего за каких-то сто лет.

Что такое электромагнитная индукция

В теории электродинамики есть дифференциальное уравнение, описывающее явление электромагнитной индукции как связь между электрическим напряжением и изменением магнитного поля во времени. Но прежде чем появилось уравнение, был установлен экспериментальный факт: в проводнике, попавшем в изменяющееся во времени магнитное поле, возникает электродвижущая сила (э.д.с.), пропорциональная скорости изменения поля. Это и есть открытый Майклом Фарадеем закон электромагнитной индукции. Э.д.с. действует на электрические заряды проводника, и если цепь замкнута, в ней начинает течь электрический ток. Меняя магнитное поле, не важно, двигая сам проводник или магнит, можно генерировать электрический ток и превратить таким образом механическую энергию в электрическую — а это уже практическое применение закона.

Самый простой «домашний» пример электрогенератора — фонарик-жучок. Внутри «жучка» находится постоянный магнитик, сделанный в виде диска, который мы крутим, нажимая ручку. Одна половинка диска — это северный полюс магнита, другая — южный. Вокруг магнитика-ротора неподвижно закреплены две небольшие полукруглые катушки. Когда мы вращаем магнит-ротор, магнитное поле, в котором находятся катушки, все время меняется, через них течет переменный ток, и горит подключенная к катушкам маленькая лампочка накаливания.

В последнее время появился другой вариант фонарика без батареек под названием «фонарь Фарадея». Когда вы его трясете, магнит в форме цилиндра двигается вокруг катушки, соединенной с конденсатором, в катушке возникает ток и конденсатор заряжается. А разряжается он через светодиод.

Еще один бытовой пример — электродинамический микрофон, используемый в системах усиления звука. В нем катушечка, прикрепленная к диафрагме, колеблется под действием голоса между полюсами постоянного магнита. Так механическая энергия наших голосовых связок преобразуется в электрическую. Сейчас электромагнитная индукция кажется простой и понятной, а 250 лет назад ученые только начали догадываться о связи между электричеством и магнетизмом, и пришлось приложить немало усилий, чтобы люди получили в свое распоряжение столько удобных, а часто и незаменимых устройств.

Монахи на службе науки

Опыты с электричеством стали весьма популярны в середине XVIII века. Были придуманы машинки для добывания электричества трением, проводились эффектные демонстрации с воспламенением эфира, пропусканием искры через качающуюся на качелях даму и даже для приготовления электризованной воды, считавшейся полезной для здоровья.

И вот в 1745 году один немецкий каноник и одновременно с ним физик из Лейдена Питер фон Мушенбрек, укрепив в горлышке банки с водой гвоздь, дотронулись им до проводника действующей электрической машины. После прерывания контакта прикосновение к гвоздю вызвало очень сильный удар, от которого у каноника онемели рука и плечо, а у Мушенбрека «все тело содрогнулось, как от молнии». Опыт стали повторять повсеместно, а француз Жан Нолле даже добился «содрогания» целой цепи державшихся за руки монахов в картезианском монастыре в Париже. Так появилась на свет «лейденская банка», попросту говоря, конденсатор.

А все-таки он движется

По стечению обстоятельств в год открытия лейденской банки родился Алессандро Вольта, который через пятьдесят лет изобрел свою электрическую батарею, и у физиков наконец появилась замечательная возможность получать электрический ток достаточной длительности, чтобы попытаться найти связь между электрическими и магнитными явлениями. Только спустя 20 лет, в 1820 году, был получен первый результат: тезка знаменитого сказочника Ганс Христиан Эрстед обнаружил отклонение стрелки компаса под действием тока, текущего вдоль меридиана. А блестящий экспериментатор Андре Мари Ампер предсказал и подтвердил экспериментально, что стальной брусок, помещенный внутрь спирали, по которой течет ток, намагничивается. Это положило начало разработке очень ценных устройств — электромагнитов, которые и сейчас остаются незаменимыми элементами многих электрических приборов.

Вскоре Эрстед сообщил о взаимности открытого им электромагнитного явления — он наблюдал движение подвешенной на проволоке батарейки, включенной в цепь, при приближении к ней магнита. Эти успехи позволили Майклу Фарадею создать очень простое, но важное приспособление: конец подвешенного проводника был опущен в резервуар с ртутью, в который снизу входил слегка выступающий над поверхностью ртути вертикальный магнит. При пропускании тока через ртуть и проводник последний начинал вращаться вокруг магнита. Это был уже почти электродвигатель! В современных его вариантах нет опасной ртути, а постоянный магнит часто заменен электромагнитом, но принцип действия остался прежним. Теперь оставалось ответить на последний вопрос: если электрический ток создает магнитное поле, предусмотрела ли природа обратный вариант?

Открытие века

Долгое время опыты не приносили результатов. Как ни располагали магниты около катушек или проводов, никаких токов не возникало. И вот в 1831 году Фарадей сделал свое самое великое открытие — явления электромагнитной индукции. Фарадей заметил, что ток появляется во всех случаях, когда магнитное поле меняется. Например, из-за движения магнита или из-за возрастания или уменьшения тока (если роль магнита выполняет проводник с током). Для демонстрации на железное кольцо наматывали два провода, один соединялся с батареей, другой — с гальванометром. При замыкании первой цепи наблюдалось резкое отклонение стрелки гальванометра, при размыкании — отклонение противоположного знака. Так Фарадею удалось «получить электричество из магнетизма». После многочисленных опытов он сам создал первый образец генератора электрического тока, отличного от батареи. Справедливости ради следует сказать, что почти одновременно с Фарадеем, но независимо от него явление электромагнитной индукции обнаружил и американский физик Джозеф Генри.

Последний штрих

Несколько десятилетий понадобилось, чтобы перейти к промышленному применению открытия. Важным этапом на этом пути стал переход от постоянных магнитов к более эффективным электромагнитам. Но здесь поначалу возникли некоторые трудности. Ведь электромагнит создает магнитное поле, только если по нему течет ток, и приходилось использовать отдельную магнитоэлектрическую машину или батарею для возбуждения самого электромагнита основного генератора. И здесь не обошлось без физического открытия, позволившего в конце концов решить эту проблему. В 1866 году сразу несколько исследователей обнаружили принцип самовозбуждения, и среди них немецкий инженер и предприниматель Вернер Сименс (основатель всемирно известной фирмы Siemens), о чем он и сделал доклад в Берлинской Академии «О превращении рабочей силы в электрический ток без применения постоянных магнитов». Благодаря этому открытию появилась динамо-машина — электрогенератор, который возбуждает свои электромагниты собственным током. Явление это не имеет ничего общего с выдумками барона Мюнхгаузена, который сам себя вытащил из болота. С сохранением энергии здесь все в порядке: после выключения тока у сердечника из мягкого железа наблюдается некоторая остаточная намагниченность, достаточная для того, чтобы с началом вращения создать небольшой ток в электромагните и соответственно магнитное поле, которое в свою очередь начнет индуцировать ток в основной цепи генератора.

Современные электрогенераторы отличаются поразительным разнообразием. От небольших устройств до гигантских тысячетонных генераторов ГЭС диаметром с десяток метров. Открытие электромагнитной индукции оказалось настолько полезным и универсальным, что его важность и практическую ценность, пожалуй, трудно переоценить. Когда Фарадею то ли лорд-канцлер, то ли премьер-министр однажды задал вопрос о пользе его открытия, ученый, хотя и был начисто лишен предпринимательской жилки, ответил так: «Она в том, сэр, что Вы, вероятно, в скором времени сможете получать с этого налоги».

Возможное существование тесной связи между электричеством и магнетизмом предполагали уже самые первые исследователи, пораженные аналогией электростатических и магнитостатических явлений притяжения и отталкивания. Это представление было настолько распространено, что сначала Кардан, а затем и Гильберт считали его предрассудком и всячески старались показать различие этих двух явлений. Но это предположение снова возникло в XVIII веке уже с большим основанием, когда было установлено намагничивающее действие молнии, а Франклину и Беккариа удалось добиться намагничивания с помощью разряда лейденской банки. Законы Кулона, формально одинаковые для электростатических и магнито-статических явлений, вновь выдвинули эту проблему.

После того как благодаря батарее Вольта появилась возможность получать электрический ток в течение долгого времени, попытки обнаружить связь между электрическими и магнитными явлениями стали более частыми и более интенсивными. И все же, несмотря на интенсивные поиски, открытие заставило себя ждать целых двадцать лет. Причины такой задержки следует искать в научных представлениях, господствовавших в те времена. Все силы понимались только в ньютоновском смысле, т. е. как силы, которые действуют между материальными частицами по соединяющей их прямой. Поэтому исследователи старались обнаружить силы именно этого рода, создавая приспособления, с помощью которых они надеялись обнаружить предполагаемое притяжение или отталкивание между магнитным полюсом и электрическим током (или, выражаясь более общим образом, между «гальваническим флюидом» и магнитным флюидом) или же пытались намагнитить стальную иглу, направляя по ней ток.

Взаимодействие между гальваническим и магнитным флюидом пытался обнаружить и Джан Доменико Романьози (1761-1835) в опытах, описанных им в статье 1802 г., на которую Гульельмо Либри (1803-1869), Пьетро Конфильякки (1777-1844) и многие другие ссылались потом, приписывая Романьози приоритет этого открытия. Достаточно, однако, прочесть эту статью, чтобы убедиться, что в опытах Романьози, проводившихся с батареей с незамкнутой цепью и магнитной иглой, вообще нет электрического тока, и поэтому самое большее, что он мог наблюдать,- это обычное электростатическое действие.

Когда 21 июля 1820 г. в одной очень лаконичной статье на четырех страничках (на латинском языке), озаглавленной «Experimenta circa effectum conflictus electrici in acum magneticam», датский физик Ганс Христиан Эрстед (1777-1851) описал фундаментальный опыт по электромагнетизму, доказывающий, что ток в прямолинейном проводнике, идущем вдоль меридиана, отклоняет магнитную иглу от направления меридиана, интерес и удивление ученых были велики не только потому, что было получено столь-долго разыскивавшееся разрешение проблемы, но и потому, что новый опыт, как сразу же стало ясно, указывал на силу неньютоновского типа.

В самом деле, из опыта Эрстеда ясно было видно, что сила, действующая между магнитным полюсом и элементом тока, направлена не по соединяющей их прямой, а по нормали к этой прямой, т. е. она, как тогда говорили, является «силой поворачивающей». Значение этого факта чувствовалось уже тогда, хотя полностью оно было осознано лишь много лет спустя. Опыт Эрстеда вызвал первую трещину в ньютоновской модели мира.

О том затруднении, в которое попала наука, можно судить, например, по замешательству, в котором находились итальянские, французские, английские и немецкие переводчики, переводившие на родной язык латинскую статью Эрстеда. Часто, сделав буквальный перевод, представлявшийся им неясным, они приводили в примечании латинский оригинал.

Действительно неясным в статье Эрстеда еще и сегодня остается объяснение, которое он пытается дать наблюдавшимся им явлениям, обусловленным, по его мнению, двумя противоположно направленными спиральными движениями вокруг проводника «электрической материи, соответственно положительной и отрицательной».

Исключительность явления, открытого Эрстедом, сразу же привлекла к нему большое внимание экспериментаторов и теоретиков. Араго, вернувшись из Женевы, где он присутствовал при аналогичных опытах, повторенных Де ла Ривом, рассказал о них в Париже, а в сентябре того же 1820 г. собрал свою известную установку с вертикальным проводником тока, проходящим сквозь горизонтально расположенный кусок картона, посыпанный железными опилками. Но окружностей из железных опилок, которые мы обычно замечаем при проведении этого опыта, он не обнаружил. Экспериментаторы видят ясно эти окружности с тех пор, как Фарадей выдвинул теорию «магнитных кривых», или «силовых линий». Действительно, нередко, чтобы увидеть что-то, нужно очень желать этого! Араго же видел только, что проводник, по его выражению, «облепливается железными опилками так, как если б это был магнит», из чего он сделал заключение, что «ток вызывает магнетизм в железе, которое не подвергалось предварительному намагничиванию».

Все в том же 1820 г. Био зачитал два доклада (30 октября и 18 декабря), в которых сообщал о результатах проведенного им вместе с Саваром экспериментального исследования. Пытаясь открыть закон, определяющий зависимость величины электромагнитной силы от расстояния, Био решил воспользоваться методом колебаний, которым раньше пользовался уже Кулон. Для этого он собрал установку, состоящую из толстого вертикального проводника, расположенного рядом с магнитной стрелкой: при включении тока в проводнике стрелка начинает колебаться с периодом, зависящим от электромагнитной силы, действующей на полюса при различных расстояниях от центра стрелки до проводника с током. Измерив эти расстояния, Био и Савар вывели носящий теперь их имя хорошо известный закон, который в своей первой формулировке не учитывал интенсивности тока (ее тогда не умели еще измерять).

Узнав о результатах опытов Био и Савара, Лаплас заметил, что действие тока можно рассматривать как результат отдельных действий на полюса стрелки бесконечного числа бесконечно малых элементов, на которые можно разделить ток, и заключил из этого, что каждый элемент тока действует на каждый полюс с силой, обратно пропорциональной квадрату расстояния этого элемента от полюса. О том, что Лаплас принял участие в обсуждении этой проблемы, говорится у Био в его работе «Precis elementaire de physique ехрё-rimentale». В сочинениях же Лапласа, насколько нам известно, нет никакого намека на такое замечание, из чего можно заключить, что он, видимо, высказал это в устной дружеской беседе с самим Био.

Чтобы пополнить свои сведения об этой элементарной силе, Био попытался, на этот раз один, определить опытным путем, изменяется ли и если изменяется, то каким образом действие элемента тока на полюс с изменением угла, образуемого направлением тока и прямой, соединяющей середину элемента с полюсом. Опыт состоял в сравнении того, какое действие оказывает на одну и ту же стрелку параллельный ей ток и ток, направленный под углом. Из данных опыта Био путем расчета, которого он не опубликовал, но который, безусловно, был ошибочным, как это показал в 1823 г. Ф. Савари {1797-1841), определил, что эта сила пропорциональна синусу угла, образуемого направлением тока и прямой, соединяющей рассматриваемую точку с серединой элемента тока. Таким образом, то, что сейчас называют «первым элементарным законом Лапласа», в значительной мере является открытием Био.

Марио Льецци "История физики"

Электрический ток в цепи всегда проявляется каким-нибудь своим действием. Это может быть как работа в определенной нагрузке, так и сопутствующее действие тока. Таким образом, по действию тока можно судить о его наличии или отсутствии в данной цепи: если нагрузка работает - ток есть. Если типичное сопутствующее току явление наблюдается - ток в цепи есть, и т. д.

Вообще, электрический ток способен вызывать различные действия: тепловое, химическое, магнитное (электромагнитное), световое или механическое, причем разного рода действия тока зачастую проявляются одновременно. Об этих явлениях и действиях тока и пойдет речь в данной статье.

Тепловое действие электрического тока

При прохождении постоянного или переменного электрического тока по проводнику, проводник нагревается. Такими нагревающимися проводниками в разных условиях и приложениях могут выступать: металлы, электролиты, плазма, расплавы металлов, полупроводники, полуметаллы.


В простейшем случае, если, скажем, через нихромовую проволоку пропустить электрический ток, то она нагреется. Данное явление используется в нагревательных приборах: в электрочайниках, в кипятильниках, в обогревателях, электроплитках и т. д. В электродуговой сварке температура электрической дуги вообще доходит до 7000°С, и металл легко плавится, - это тоже тепловое действие тока.

Выделяемое на участке цепи количество теплоты зависит от приложенного к этому участку напряжения, значения протекающего тока и от времени его протекания ().

Преобразовав закон Ома для участка цепи, можно для вычисления количества теплоты использовать либо напряжение, либо силу тока, но тогда обязательно необходимо знать и сопротивление цепи, ведь именно оно ограничивает ток, и вызывает, по сути, нагрев. Или, зная ток и напряжение в цепи, можно так же легко найти количество выделяемой теплоты.

Химическое действие электрического тока

Электролиты, содержащие ионы, под действием постоянного электрического тока - это и есть химическое действие тока. К положительному электроду (аноду) в процессе электролиза притягиваются отрицательные ионы (анионы), а к отрицательному электроду (катоду) - положительные ионы (катионы). То есть вещества, содержащиеся в электролите, в процессе электролиза выделяются на электродах источника тока.

Например, в раствор определенной кислоты, щелочи или соли погружают пару электродов, и при пропускании электрического тока по цепи на одном электроде создается положительный заряд, на другом - отрицательный. Ионы содержащиеся в растворе начинают откладываться на электроде с противоположным зарядом.

Скажем, при электролизе медного купороса (CuSO4), катионы меди Cu2+ с положительным зарядом движутся к отрицательно заряженному катоду, где они получают недостающий заряд, и становятся нейтральными атомами меди, оседая на поверхности электрода. Гидроксильная группа -OH отдаст электроны на аноде, и в результате выделится кислород. Положительно заряженные катионы водорода H+ и отрицательно заряженные анионы SO42- останутся в растворе.

Химическое действие электрического тока используется в промышленности, например, для разложения воды на составляющие ее части (водород и кислород). Также электролиз позволяет получать некоторые металлы в чистом виде. С помощью электролиза покрывают тонким слоем определенного металла (никеля, хрома) поверхности - это и т.д.

В 1832 году Майкл Фарадей установил, что масса m вещества, выделившегося на электроде, прямо пропорциональна электрическому заряду q, прошедшему через электролит. Если через электролит пропускается в течение времени t постоянный ток I, то справедлив первый закон электролиза Фарадея:

Здесь коэффициент пропорциональности k называется электрохимическим эквивалентом вещества. Он численно равен массе вещества, выделившегося при прохождении через электролит единичного электрического заряда, и зависит от химической природы вещества.

При наличии электрического тока в любом проводнике (в твердом, жидком или газообразном) наблюдается магнитное поле вокруг проводника, то есть проводник с током приобретает магнитные свойства.

Так, если к проводнику, по которому течет ток, поднести магнит, например в виде магнитной стрелки компаса, то стрелка повернется перпендикулярно проводнику, а если намотать проводник на железный сердечник, и пропустить по проводнику постоянный ток, то сердечник станет электромагнитом.

В 1820 году Эрстед открыл магнитное действие тока на магнитную стрелку, а Ампер установил количественные закономерности магнитного взаимодействия проводников с током.


Магнитное поле всегда порождается током, то есть движущимися электрическими зарядами, в частности - заряженными частицами (электронами, ионами). Противоположно направленные токи взаимно отталкиваются, однонаправленные токи взаимно притягиваются.

Такое механическое взаимодействие происходит благодаря взаимодействию магнитных полей токов, то есть это, в первую очередь, - магнитное взаимодействие, а уж потом - механическое. Таким образом, магнитное взаимодействие токов первично.

В 1831 году, Фарадей установил, что изменяющееся магнитное поле от одного контура порождает ток в другом контуре: генерируемая ЭДС пропорциональна скорости изменения магнитного потока. Логично, что именно магнитное действие токов используется по сей день и во всех трансформаторах, а не только в электромагнитах (например, в промышленных).

В простейшем виде световое действие электрического тока можно наблюдать в лампе накаливания, спираль которой разогревается проходящим через нее током до белого каления и излучает свет.

Для лампы накаливания на световую энергию приходится около 5% от подведенной электроэнергии, остальные 95% которой преобразуется в тепло.

Люминесцентные лампы более эффективно преобразуют энергию тока в свет - до 20% электроэнергии преобразуется в видимый свет благодаря люминофору, принимающему от электрического разряда в парах ртути или в инертном газе типа неона.


Более эффективно световое действие электрического тока реализуется в светодиодах. При пропускании электрического тока через p-n переход в прямом направлении, носители заряда - электроны и дырки - рекомбинируют с излучением фотонов (из-за перехода электронов с одного энергетического уровня на другой).

Лучшие излучатели света относятся к прямозонным полупроводникам (то есть к таким, в которых разрешены прямые оптические переходы зона-зона), например GaAs, InP, ZnSe или CdTe. Варьируя состав полупроводников, можно создавать светодиоды для всевозможных длин волн от ультрафиолета (GaN) до среднего инфракрасного диапазона (PbS). КПД светодиода как источника света доходит в среднем до 50%.

Как было отмечено выше, каждый проводник, по которому течет электрический ток, образует вокруг себя . Магнитные действия превращаются в движение, например, в электродвигателях, в магнитных подъемных устройствах, в магнитных вентилях, в реле и т. д.


Механическое действие одного тока на другой описывает закон Ампера. Впервые этот закон был установлен Андре Мари Ампером в 1820 для постоянного тока. Из следует, что параллельные проводники с электрическими токами, текущими в одном направлении, притягиваются, а в противоположных - отталкиваются.

Законом Ампера называется также закон, определяющий силу, с которой магнитное поле действует на малый отрезок проводника с током. Сила, с которой магнитное поле действует на элемент проводника с током, находящегося в магнитном поле, прямо пропорциональна току в проводнике и векторному произведению элемента длины проводника на магнитную индукцию.

На этом принципе основана , где ротор играет роль рамки с током, ориентирующейся во внешнем магнитном поле статора вращающим моментом M.