Чему равно касательное ускорение. Кинематика материальной точки. Касательное и нормальное ускорение

Ускорение – это величина, которая характеризует быстроту изменения скорости.

Например, автомобиль, трогаясь с места, увеличивает скорость движения, то есть движется ускоренно. Вначале его скорость равна нулю. Тронувшись с места, автомобиль постепенно разгоняется до какой-то определённой скорости. Если на его пути загорится красный сигнал светофора, то автомобиль остановится. Но остановится он не сразу, а за какое-то время. То есть скорость его будет уменьшаться вплоть до нуля – автомобиль будет двигаться замедленно, пока совсем не остановится. Однако в физике нет термина «замедление». Если тело движется, замедляя скорость, то это тоже будет ускорение тела, только со знаком минус (как вы помните, скорость – это векторная величина).

> – это отношение изменения скорости к промежутку времени, за который это изменении произошло. Определить среднее ускорение можно формулой:

Рис. 1.8. Среднее ускорение. В СИ единица ускорения – это 1 метр в секунду за секунду (или метр на секунду в квадрате), то есть

Метр на секунду в квадрате равен ускорению прямолинейно движущейся точки, при котором за одну секунду скорость этой точки увеличивается на 1 м/с. Иными словами, ускорение определяет, насколько изменяется скорость тела за одну секунду. Например, если ускорение равно 5 м/с 2 , то это означает, что скорость тела каждую секунду увеличивается на 5 м/с.

Мгновенное ускорение тела (материальной точки) в данный момент времени – это физическая величина, равная пределу, к которому стремится среднее ускорение при стремлении промежутка времени к нулю. Иными словами – это ускорение, которое развивает тело за очень короткий отрезок времени:

При ускоренном прямолинейном движении скорость тела возрастает по модулю, то есть

V 2 > v 1

а направление вектора ускорения совпадает с вектором скорости

Если скорость тела по модулю уменьшается, то есть

V 2 < v 1

то направление вектора ускорения противоположно направлению вектора скорости Иначе говоря, в данном случае происходит замедление движения , при этом ускорение будет отрицательным (а < 0). На рис. 1.9 показано направление векторов ускорения при прямолинейном движении тела для случая ускорения и замедления.

Рис. 1.9. Мгновенное ускорение.

При движении по криволинейной траектории изменяется не только модуль скорости, но и её направление. В этом случае вектор ускорение представляют в виде двух составляющих (см. следующий раздел).

Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

Рис. 1.10. Тангенциальное ускорение.

Направление вектора тангенциального ускорения (см. рис. 1.10) совпадает с направлением линейной скорости или противоположно ему. То есть вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела.

Нормальное ускорение

Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения (см. рис. 1.10). Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой Вектор нормального ускорения направлен по радиусу кривизны траектории.

Полное ускорение

Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по и определяется формулой:

(согласно теореме Пифагора для прямоугольно прямоугольника).

Чтобы уметь решать различные задачи на движение тел по физике, необходимо знать определения физических величин, а также формулы, с помощью которых они связаны. В этой статье будут рассмотрены вопросы, что такое тангенциальная скорость, что такое полное ускорение и какие компоненты его составляют.

Понятие о скорости

Двумя основными величинами кинематики перемещения тел в пространстве являются скорость и ускорение. Скорость описывает быстроту перемещения, поэтому математическая форма записи для нее имеет следующий вид:

Вам будет интересно:

Здесь l¯ - является вектором перемещения. Иными словами, скорость - это производная по времени от пройденного пути.

Как известно, всякое тело движется по воображаемой линии, которая называется траекторией. Вектор скорости всегда направлен по касательной к этой траектории, в какой бы точке не находилось движущееся тело.

Существует несколько названий величины v¯, если рассматривать ее совместно с траекторией. Так, поскольку направлена она по касательной, то ее называют тангенциальной скоростью. Также о ней могут говорить, как о линейной физической величине в противоположность угловой скорости.

Вычисляется скорость в метрах в секунду в СИ, однако на практике часто пользуются километрами в час.

Понятие об ускорении

В отличие от скорости, которая характеризует быстроту прохождения телом траектории, ускорение - это величина, описывающая быстроту изменения скорости, что математически записывается так:

Как и скорость, ускорение - это векторная характеристика. Однако его направление не связано с вектором скорости. Оно определяется изменением направления v¯. Если в процессе движения скорость не изменяет своего вектора, тогда ускорение a¯ будет направлено вдоль той же линии, что и скорость. Такое ускорение называют тангенциальным. Если же скорость будет менять направление, сохраняя при этом абсолютное значение, то ускорение будет направлено к центру кривизны траектории. Оно называется нормальным.

Измеряется ускорение в м/с2. Например, известное всем ускорение свободного падения является тангенциальным при вертикальном подъеме или падении объекта. Его величина вблизи поверхности нашей планеты составляет 9,81 м/с2, то есть за каждую секунду падения скорость тела увеличивается на 9,81 м/с.

Причиной появления ускорения является не скорость, а сила. Если сила F оказывает действие на тело массой m, то она неминуемо создаст ускорение a, которое можно вычислить так:

Эта формула является прямым следствием из второго закона Ньютона.

Полное, нормальное и тангенциальное ускорения

Скорость и ускорение как физические величины были рассмотрены в предыдущих пунктах. Теперь мы подробнее изучим, какие компоненты составляют полное ускорение a¯.

Предположим, что тело движется со скоростью v¯ по криволинейной траектории. Тогда будет справедливо равенство:

Вектор u¯ имеет единичную длину и направлен вдоль касательной линии к траектории. Воспользовавшись таким представлением скорости v¯, получим равенство для полного ускорения:

a¯ = dv¯/dt = d(v*u¯)/dt = dv/dt*u¯ + v*du¯/dt.

Полученное в правом равенстве первое слагаемое называется тангенциальным ускорением. Скорость связана с ним тем фактом, что она количественно определяет изменение абсолютного значения величины v¯, не принимая во внимание ее направление.

Второе слагаемое - это нормальное ускорение. Оно количественно описывает изменение вектора скорости, не принимая во внимание изменение ее модуля.

Если обозначить как at и an тангенциальную и нормальную составляющие полного ускорения a, тогда модуль последнего можно вычислить по формуле:

a = √(at2 + an2).

Связь тангенциального ускорения и скорости

Соответствующую связь описывают кинематические выражения. Например, в случае движения по прямой с постоянным ускорением, которое является тангенциальным (нормальная составляющая равна нулю), справедливы выражения:

В случае движения по окружности с постоянным ускорением эти формулы так же справедливы.

Таким образом, какой бы ни была траектория перемещения тела, тангенциальное ускорение через тангенциальную скорость рассчитывается, как производная по времени от ее модуля, то есть:

Например, если скорость изменяется по закону v = 3*t3 + 4*t, тогда at будет равно:

at = dv/dt = 9*t2 + 4.

Скорость и нормальное ускорение

Запишем в явном виде формулу для нормальной компоненты an, имеем:

an¯ = v*du¯/dt = v*du¯/dl*dl/dt = v2/r*re¯

Где re¯ - единичной длины вектор, который к центру кривизны траектории направлен. Это выражение устанавливает связь тангенциальной скорости и нормального ускорения. Видим, что последнее зависит от модуля v в данный момент времени и от радиуса кривизны r.

Нормальное ускорение появляется всегда, когда изменяется вектор скорости, однако оно равно нулю, если этот вектор сохраняет направление. Говорить о величине an¯ имеет смысл только тогда, когда кривизна траектории является конечной величиной.

Выше мы отмечали, что при движении по прямой линии нормальное ускорение отсутствует. Однако в природе существует тип траектории, при движении по которой an имеет конечную величину, а at = 0 при |v¯| = const. Этой траекторией является окружность. Например, вращение с постоянной частотой металлического вала, карусели или планеты вокруг собственной оси происходит с постоянным нормальным ускорением an и нулевым тангенциальным ускорением at.

Виды ускорений в СТО.

Итак, мы показали, что существует два вида измеримых скоростей. Кроме того, быстрота, измеряемая в тех же единицах, тоже очень интересна. При малых значениях все эти скорости равны.

А сколько же существует ускорений? Какое ускорение должно быть константой при равноускоренном движении релятивистской ракеты, чтобы космонавт всегда оказывал на пол ракеты одну и ту же силу, чтобы он не стал невесомым, или чтобы он не умер от перегрузок?

Введем определения разных видов ускорений.

Координатно-координатное ускорение dv /dt это изменение координатной скорости , измеренное по синхронизированным координатным часам

dv /dt=d 2 r /dt 2 .

Забегая вперед, заметим, что dv /dt = 1·dv /dt = g 0 dv /dt.

Координатно-собственное ускорение dv /dt это изменение координатной скорости, измеренное по собственным часам

dv /dt=d(dr /dt)/dt = gd 2 r /dt 2 .
dv /dt = g 1 dv /dt.

Собственно-координатное ускорение db /dt это изменение собственной скорости, измеренное по синхронизированным координатным часам , расставленным по ходу движения пробного тела:

db /dt = d(dr /dt)/dt = g 3 v (v dv /dt)/c 2 + gdv /dt.
Если v || dv /dt, тогда db /dt = g 3 dv /dt.
Если v перпендикулярно dv /dt, тогда db /dt = gdv /dt.

Собственно-собственное ускорение db /dt это изменение собственной скорости, измеренное пособственным часам , связанным с движущимся телом:

db /dt = d(dr /dt)/dt = g 4 v (v dv /dt)/c 2 + g 2 dv /dt.
Если v || dv /dt, тогдаdb /dt = g 4 dv /dt.
Если v перпендикулярно dv /dt, тогда db /dt = g 2 dv /dt.

Сравнивая показатели при коэффициенте g в четырех типах ускорений, записанных выше, замечаем, что в этой группе отсутствует член с коэффициентом g 2 при параллельных ускорениях. Но мы еще не взяли производные от быстроты. Это ведь тоже скорость. Возьмём производную по времени от быстроты, воспользовавшись формулой v/c = th(r/c):

dr/dt = (c·arth(v/c))" = g 2 dv/dt.

А если взять dr/dt, получим:

dr/dt = g 3 dv/dt,

или dr/dt = db/dt.

Следовательно, мы имеем две измеримые скорости v и b , и ещё одну, неизмеримую, но наиболее симметричную, быстроту r. И шесть видов ускорений, два из которых dr/dt и db/dt совпадают. Какое же из этих ускорений является собственным, т.е. ощущаемым ускоряющимся телом?



К собственному ускорению мы вернемся ниже, а пока выясним, какое ускорение входит во второй закон Ньютона. Как известно, в релятивистской механике второй закон механики, записанный в видеf =ma , оказывается ошибочным. Вместо него силу и ускорение связывает уравнение

f = m (g 3 v (va )/c 2 + ga ),

которое является основой для инженерных расчетов релятивистских ускорителей. Если мы сравним это уравнение с только что полученным уравнением для ускорения db /dt:

db /dt = g 3 v (v dv /dt)/c 2 + gdv /dt,

то заметим, что они отличаются лишь множителем m. То есть, можно записать:

f = m·db /dt.

Последнее уравнение возвращает массе статус меры инертности в релятивистской механике. Сила, действующая на тело, пропорциональна ускорению db /dt. Коэффициентом пропорциональности является инвариантная масса. Вектора силы f иускорение db /dt сонаправлены при любой ориентации векторов v иa , или b и db /dt.

Формула, записанная через ускорение dv /dt, не дает такой пропорциональности. Сила и координатно-координатное ускорение в общем случае не совпадают по направлению. Параллельными они будут лишь в двух случаях: если вектора v иdv /dtпараллельны друг другу, и если они перпендикулярны друг другу. Но в первом случае сила f =mg 3 dv /dt, а во втором - f =mgdv /dt.

Таким образом, в законе Ньютона мы должны использовать ускорение db /dt, то есть, изменениесобственной скоростиb , измеренное по синхронизированным часам.

Возможно с таким же успехом можно будет доказать, что f = mdr /dt, где dr /dt - вектор собственного убыстрения, но быстрота величина неизмеримая, хотя и легко вычисляема. Будет ли верно векторное равенство, сказать не берусь, но скалярное равенство справедливо в силу того, что dr/dt=db/dt и f =mdb /dt.

Ускорение – это величина, которая характеризует быстроту изменения скорости.

Например, автомобиль, трогаясь с места, увеличивает скорость движения, то есть движется ускоренно. Вначале его скорость равна нулю. Тронувшись с места, автомобиль постепенно разгоняется до какой-то определённой скорости. Если на его пути загорится красный сигнал светофора, то автомобиль остановится. Но остановится он не сразу, а за какое-то время. То есть скорость его будет уменьшаться вплоть до нуля – автомобиль будет двигаться замедленно, пока совсем не остановится. Однако в физике нет термина «замедление». Если тело движется, замедляя скорость, то это тоже будет ускорение тела, только со знаком минус (как вы помните, скорость – это векторная величина).

Среднее ускорение

Среднее ускорение > – это отношение изменения скорости к промежутку времени, за который это изменении произошло. Определить среднее ускорение можно формулой:

где – вектор ускорения .

Направление вектора ускорения совпадает с направлением изменения скорости Δ = - 0 (здесь 0 – это начальная скорость, то есть скорость, с которой тело начало ускоряться).

В момент времени t1 (см. рис 1.8) тело имеет скорость 0 . В момент времени t2 тело имеет скорость . Согласно правилу вычитания векторов найдём вектор изменения скорости Δ = - 0 . Тогда определить ускорение можно так:

Рис. 1.8. Среднее ускорение.

В СИ единица ускорения – это 1 метр в секунду за секунду (или метр на секунду в квадрате), то есть

Метр на секунду в квадрате равен ускорению прямолинейно движущейся точки, при котором за одну секунду скорость этой точки увеличивается на 1 м/с. Иными словами, ускорение определяет, насколько изменяется скорость тела за одну секунду. Например, если ускорение равно 5 м/с 2 , то это означает, что скорость тела каждую секунду увеличивается на 5 м/с.

Мгновенное ускорение

Мгновенное ускорение тела (материальной точки) в данный момент времени – это физическая величина, равная пределу, к которому стремится среднее ускорение при стремлении промежутка времени к нулю. Иными словами – это ускорение, которое развивает тело за очень короткий отрезок времени:

Направление ускорения также совпадает с направлением изменения скорости Δ при очень малых значениях промежутка времени, за который происходит изменение скорости. Вектор ускорения может быть задан проекциями на соответствующие оси координат в данной системе отсчёта (проекциями а Х, a Y , a Z).

При ускоренном прямолинейном движении скорость тела возрастает по модулю, то есть

V 2 > v 1

а направление вектора ускорения совпадает с вектором скорости 2 .

Если скорость тела по модулю уменьшается, то есть

V 2 < v 1

то направление вектора ускорения противоположно направлению вектора скорости 2 . Иначе говоря, в данном случае происходит замедление движения , при этом ускорение будет отрицательным (а < 0). На рис. 1.9 показано направление векторов ускорения при прямолинейном движении тела для случая ускорения и замедления.

Рис. 1.9. Мгновенное ускорение.

При движении по криволинейной траектории изменяется не только модуль скорости, но и её направление. В этом случае вектор ускорение представляют в виде двух составляющих (см. следующий раздел).

Тангенциальное ускорение

Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

Рис. 1.10. Тангенциальное ускорение.

Направление вектора тангенциального ускорения τ (см. рис. 1.10) совпадает с направлением линейной скорости или противоположно ему. То есть вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела.

Нормальное ускорение

Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения (см. рис. 1.10). Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой n . Вектор нормального ускорения направлен по радиусу кривизны траектории.

Полное ускорение

Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по правилу сложения векторов и определяется формулой:

(согласно теореме Пифагора для прямоугольно прямоугольника).

Направление полного ускорения также определяется правилом сложения векторов :

= τ + n

Тангенциальное ускорение характеризует изменение скорости по модулю (величине) и направлено по касательной к траектории:

,

где  производная модуля скорости,  единичный вектор касательной, совпадающий по направлению со скоростью.

Нормальное ускорение характеризует изменение скорости по направлению и направлено по радиусу кривизны к центру кривизны траектории в данной точке:

,

где R  радиус кривизны траектории,  единичный вектор нормали.

Модуль вектора ускорения может быть найден по формуле

.

1.3. Основная задача кинематики

Основная задача кинематики заключается в нахождении закона движения материальной точки. Для этого используются следующие соотношения:

;
;
;
;

.

Частные случаи прямолинейного движения:

1) равномерное прямолинейное движение: ;

2) равнопеременное прямолинейное движение:
.

1.4. Вращательное движение и его кинематические характеристики

При вращательном движении все точки тела движутся по окружностям, центры которых лежат на одной и той же прямой, называемой осью вращения. Для характеристики вращательного движения вводятся следующие кинематические характеристики (рис. 3).

Угловое перемещение
 вектор, численно равный углу поворота тела
за время
и направленный вдоль оси вращения так, что, глядя вдоль него, поворот тела наблюдается происходящим по часовой стрелке.

Угловая скорость  характеризует быстроту и направление вращения тела, равна производной угла поворота по времени и направлена вдоль оси вращения как угловое перемещение.

При вращательном движении справедливы следующие формулы:

;
;
.

Угловое ускорение характеризует быстроту изменения угловой скорости с течением времени, равно первой производной угловой скорости и направлено вдоль оси вращения:

;
;
.

Зависимость
выражает закон вращения тела.

При равномерном вращении:  = 0,  = const,  = t.

При равнопеременном вращении:  = const,
,
.

Для характеристики равномерного вращательного движения используются период вращения и частота вращения.

Период вращения Т – время одного оборота тела, вращающегося с постоянной угловой скоростью.

Частота вращения  – количество оборотов, совершаемых телом за единицу времени.

Угловая скорость может быть выражена следующим образом:

.

Связь между угловыми и линейными кинематическими характеристиками (рис. 4):

2. Динамика поступательного и вращательного движений

    1. Законы Ньютона Первый закон Ньютона: всякое тело находится в состоянии покоя или равномерного прямолинейного движения, пока воздействие со стороны других тел не выведет его из этого состояния.

Тела, не подверженные внешним воздействиям, называются свободными телами. Система отсчёта, связанная со свободным телом, называется инерциальной системой отсчёта (ИСО). По отношению к ней любое свободное тело будет двигаться равномерно и прямолинейно или находиться в состоянии покоя. Из относительности движения следует, что система отсчёта, движущаяся равномерно и прямолинейно по отношению к ИСО, также является ИСО. ИСО играют важную роль во всех разделах физики. Это связано с принципом относительности Эйнштейна, согласно которому математическая форма любого физического закона должна иметь один и тот же вид во всех инерциальных системах отсчёта.

К основным понятиям, используемым в динамике поступательного движения, относятся сила, масса тела, импульс тела (системы тел).

Силой называется векторная физическая величина, являющаяся мерой механического действия одного тела на другое. Механическое действие возникает как при непосредственном контакте взаимодействующих тел (трение, реакция опоры, вес и т.д.), так и посредством силового поля , существующего в пространстве (сила тяжести, кулоновские силы и т.д.). Сила характеризуется модулем, направлением и точкой приложения.

Одновременное действие на тело нескольких сил ,,...,может быть заменено действием результирующей (равнодействующей) силы:

=++...+=.

Массой тела называется скалярная величина, являющаяся мерой инертности тела. Под инертностью понимается свойство материальных тел сохранять свою скорость неизменной в отсутствие внешних воздействий и изменять её постепенно (т.е. с конечным ускорением) под действием силы.

Импульсом тела (материальной точки) называется векторная физическая величина, равная произведению массы тела на его скорость:
.

Импульс системы материальных точек равен векторной сумме импульсов точек, составляющих систему:
.

Второй закон Ньютона : скорость изменения импульса тела равна действующей на него силе:

.

Если масса тела остается постоянной, то ускорение, приобретаемое телом относительно инер­ци­аль­ной системы отсчета, прямо пропорционально действующей на него силе и обратно пропорционально массе тела:

.

Разложение ускорения a (t) {\displaystyle \mathbf {a} (t)\ \ } на тангенциальное и нормальное a n {\displaystyle \mathbf {a} _{n}} ; ( τ {\displaystyle \mathbf {\tau } } - единичный касательный вектор).

Тангенциа́льное ускоре́ние - компонента ускорения , направленная по касательной к траектории движения. Характеризует изменение модуля скорости в отличие от нормальной компоненты , характеризующей изменение направления скорости. Тангенциальное ускорение равно произведению единичного вектора, направленного по скорости движения, на производную модуля скорости по времени. Таким образом, направлено в ту же сторону, что и вектор скорости при ускоренном движении (положительная производная) и в противоположную при замедленном (отрицательная производная).

Обозначается обычно символом, выбранным для ускорения, с добавлением индекса, обозначающего тангенциальную компоненту: a τ {\displaystyle \mathbf {a} _{\tau }\ \ } или a t {\displaystyle \mathbf {a} _{t}\ \ } , w τ {\displaystyle \mathbf {w} _{\tau }\ \ } , u τ {\displaystyle \mathbf {u} _{\tau }\ \ } и т. д.

Иногда используется не векторная форма, а скалярная - a τ {\displaystyle a_{\tau }\ \ } , обозначающая проекцию полного вектора ускорения на единичный вектор касательной к траектории, что соответствует коэффициенту разложения по сопутствующему базису .

Энциклопедичный YouTube

  • 1 / 5

    Величину тангенциального ускорения как проекцию вектора ускорения на касательную к траектории можно выразить так:

    a τ = d v d t , {\displaystyle a_{\tau }={\frac {dv}{dt}},}

    где v = d l / d t {\displaystyle v\ =dl/dt} - путевая скорость вдоль траектории, совпадающая с абсолютной величиной мгновенной скорости в данный момент.

    Если использовать для единичного касательного вектора обозначение e τ {\displaystyle \mathbf {e} _{\tau }\ } , то можно записать тангенциальное ускорение в векторном виде:

    a τ = d v d t e τ . {\displaystyle \mathbf {a} _{\tau }={\frac {dv}{dt}}\mathbf {e} _{\tau }.}

    Вывод

    Вывод 1

    Выражение для тангенциального ускорения можно найти, продифференцировав по времени вектор скорости , представленный в виде v = v e τ {\displaystyle \mathbf {v} =v\,\mathbf {e} _{\tau }} через единичный вектор касательной e τ {\displaystyle \mathbf {e} _{\tau }} :

    a = d v d t = d (v e τ) d t = d v d t e τ + v d e τ d t = d v d t e τ + v d e τ d l d l d t = d v d t e τ + v 2 R e n , {\displaystyle \mathbf {a} ={\frac {d\mathbf {v} }{dt}}={\frac {d(v\,\mathbf {e} _{\tau })}{dt}}={\frac {\mathrm {d} v}{\mathrm {d} t}}\mathbf {e} _{\tau }+v{\frac {d\mathbf {e} _{\tau }}{dt}}={\frac {\mathrm {d} v}{\mathrm {d} t}}\mathbf {e} _{\tau }+v{\frac {d\mathbf {e} _{\tau }}{dl}}{\frac {dl}{dt}}={\frac {\mathrm {d} v}{\mathrm {d} t}}\mathbf {e} _{\tau }+{\frac {v^{2}}{R}}\mathbf {e} _{n}\ ,}

    где первое слагаемое - тангенциальное ускорение, а второе - нормальное ускорение .

    Здесь использовано обозначение e n {\displaystyle e_{n}\ } для единичного вектора нормали к траектории и l {\displaystyle l\ } - для текущей длины траектории ( l = l (t) {\displaystyle l=l(t)\ } ); в последнем переходе также использовано очевидное

    d l / d t = v {\displaystyle dl/dt=v\ }

    и, из геометрических соображений,

    d e τ d l = e n R . {\displaystyle {\frac {d\mathbf {e} _{\tau }}{dl}}={\frac {\mathbf {e} _{n}}{R}}.}

    Вывод 2

    Если траектория гладкая (что предполагается), то:

    То и другое следует из того, что угол вектора к касательной будет не ниже первого порядка по . Отсюда сразу же следует искомая формула.

    Говоря менее строго, проекция v {\displaystyle \mathbf {v} \ } на касательную при малых d t {\displaystyle dt\ } будет практически совпадать с длиной вектора v {\displaystyle \mathbf {v} \ } , поскольку угол отклонения этого вектора от касательной при малых d t {\displaystyle dt\ } всегда мал, а значит косинус этого угла можно считать равным единице .

    Замечания

    Абсолютная величина тангенциального ускорения зависит только от путевого ускорения, совпадая с его абсолютной величиной, в отличие от абсолютной величины нормального ускорения, которая от путевого ускорения не зависит, зато зависит от путевой скорости.