Количество движения системы его вычисление. Изменение количества движения механической системы. Упражнения для самостоятельной работы

§1. Количество движения системы (импульс системы)

Количество движения (импульс тела) – векторная физическая величина, равная произведению массы тела на его скорость:

Импульс (количество движения) – одна из самых фундаментальных характеристик движения тела или системы тел.

Запишем II закон Ньютона в другой форме, учитывая, что ускорение Тогда следовательно

Произведение силы на время ее действия равно приращению импульса тела:

Где - импульс силы, который показывает, что результат действия силы зависит не только от ее значения, но и от продолжительности ее действия.

Количеством движения системы (импульсом) будем называть векторную величину , равную геомет­рической сумме (главному вектору) количеств движения (импульсов) всех точек системы (рис.2):

Из чертежа видно, что независимо от величин скоростей точек системы (если только эти скорости не параллельны) вектор может принимать любые значения и даже оказаться равным нулю, когда многоугольник, построенный из векторов , замкнется. Следова­тельно, по величине нель­зя полностью судить о ха­рактере движения системы.

Рис.2. Количество движения системы

§2. Теорема об изменении количества движения (импульса)

Пусть на тело массой m в течение некоторого малого промежутка времени Δt действовала сила Под действием этой силы скорость тела изменилась на Следовательно, в течение времени Δt тело двигалось с ускорением:

Из основного закона динамики (второго закона Ньютона) следует:

§3. Закон сохранения количества движения (закон сохранения импульса)

Из теоремы об изменении количества движения системы можно получить следую­щие важные следствия:

1) Пусть сумма всех внешних сил, действующих на замкнутую систему, равна нулю:

Тогда из уравнения следует, что Q = = const . Таким образом, если сумма всех внешних сил, действующих на замкнутую систему, равна нулю, то вектор количества движения (импульса) системы будет постоянен по модулю и направлению.

2) Пусть внешние силы, действующие на систему, таковы, что сумма их проекций на какую-нибудь ось (например О x ) равна нулю:

Тогда из уравнения следует, что при этом Q x = const . Таким образом, если сумма проекций всех действующих внешних сил на какую-нибудь ось равна нулю, то проекция количества движения (импульса) системы на эту ось есть величина постоянная.

Эти результаты и выражают закон сохранения количества движения системы: при любом характере взаимодействия тел, образующих замкнутую систему, вектор полного импульса этой системы все время остается постоянным.

Из них следует, что внутренние силы изменить суммарное количество движения системы не могут.

Закон сохранения полного импульса изолированной системы – это универсальный закон природы. В более общем случае, когда система незамкнута, из следует, что полный импульс незамкнутой системы не остается постоянным. Его изменение за единицу времени равно геометрической сумме всех внешних сил.

Рассмотрим неко­торые примеры:

а) Явление отдачи или отката. Если рассматривать винтовку и пулю как одну систему, то давление пороховых газов при выстреле будет силой внутренней. Эта сила не может изменить суммарное количество движения системы. Но так как пороховые газы, действуя на пулю, сообщают ей некоторое количество движения, направленное вперед, то они одновременно должны сообщить винтовке такое же количество движения в обратном направлении. Это вызовет движение винтовки назад, т.е. так называемую отдачу. Аналогичное явление получается при стрельбе из орудия (откат).

б) Работа гребного винта (пропеллера). Винт сообщает некоторой массе воздуха (или воды) движение вдоль оси винта, отбрасывая эту массу назад. Если рассматривать отбрасываемую массу и самолет (или судно) как одну систему, то силы взаимодействия винта и среды как внутренние не могут изменить суммарное коли­чество движения этой системы. Поэтому при отбрасывании массы воздуха (воды) назад самолет (или судно) получает соответствующую скорость движения вперед, такую, что общее количество движения рассматриваемой системы останется равным нулю, так как оно было нулем до начала движения.

Аналогичный эффект достигается действием весел или гребных колес.

в) Реактивное движение. В реактивном снаряде (ракете) газообразные продукты горения топлива с большой скоростью выбрасываются из отверстия в хвостовой части ракеты (из сопла реактивного двигателя). Действующие при этом силы давления бу­дут силами внутренними, и они не могут изменить суммарное коли­чество движения системы ракета - продукты горения топлива. Но так как вырывающиеся газы имеют известное количество движения, на­правленное назад, то ракета получает при этом соответствующую скорость движения вперед.


Вопросы для самопроверки:

Как формулируется теорема об изменении количества движения системы?

Запишите математическое выражение теоремы об изменении количества движения механической системы в дифференциальной и интегральной форме.

В каком случае количество движения механической системы не изменяется?

Как определяется импульс переменной силы за конечный промежуток времени? Что характеризует импульс силы?

Чему равны проекции импульса постоянной и переменной силы на оси координат?

Чему равен импульс равнодействующей?

Как изменяется количество движения точки, движущейся равномерно по окружности?

Что называется количеством движения механической системы?

Чему равно количество движения маховика, вращающегося вокруг неподвижной оси, проходящей через его центр тяжести?

При каких условиях количество движения механической системы не изменяется? При каких условиях не изменяется его проекция на некоторую ось?

Почему происходит откат орудия при выстреле?

Могут ли внутренние силы изменить количество движения системы или количество движения ее части?

От каких факторов зависит скорость свободного движения ракеты?

Зависит ли конечная скорость ракеты от времени сгорания топлива?

В качестве системы, о которой идёт речь в теореме, может выступать любая механическая система, состоящая из любых тел.

Формулировка теоремы

Количеством движения (импульсом) механической системы называют величину, равную сумме количеств движения (импульсов) всех тел, входящих в систему. Импульс внешних сил, действующих на тела системы, - это сумма импульсов всех внешних сил, действующих на тела системы.

( кг·м/с)

Теорема об изменении количества движения системы утверждает

Изменение количества движения системы за некоторый промежуток времени равно импульсу внешних сил, действующих на систему, за тот же промежуток времени.

Закон сохранения количества движения системы

Если сумма всех внешних сил, действующих на систему, равна нулю, то количество движения (импульс) системы есть величина постоянная.

, получим выражение теоремы об изменении количества движения системы в дифференциальной форме :

Проинтегрировав обе части полученного равенства по произвольно взятому промежутку времени между некоторыми и , получим выражение теоремы об изменении количества движения системы в интегральной форме:

Зако́н сохране́ния и́мпульса (Зако́н сохране́ния количества движения ) утверждает, что векторная сумма импульсов всех тел системы есть величина постоянная, если векторная сумма внешних сил, действующих на систему, равна нулю.

(моме́нт коли́чества движе́ния м 2 ·кг·с −1 )

Теорема об изменении момента количества движения относительно центра

производная по времени от момента количества движения (кинетического момента) материальной точки относительно какого-либо неподвижного центра равна моменту действующей на точку силы относительно того же центра.

dk 0 /dt = M 0 (F ) .

Теорема об изменении момента количества движения относительно оси

производная по времени от момента количества движения (кинетического момента) материальной точки относительно какой-либо неподвижной оси равна моменту действующей на эту точку силы относительно той же оси.

dk x /dt = M x (F ); dk y /dt = M y (F ); dk z /dt = M z (F ) .

Рассмотрим материальную точку M массой m , движущуюся под действием силы F (рисунок 3.1). Запишем и построим вектор момента количества движения (кинетического момента) M 0 материальной точки относительно центра O :

Дифференцируем выражение момента количества движения (кинетического момента k 0) по времени:

Так как dr /dt = V , то векторное произведение V m V (коллинеарных векторов V и m V ) равно нулю. В то же время d(m V) /dt = F согласно теореме о количестве движения материальной точки. Поэтому получаем, что

dk 0 /dt = r F , (3.3)

где r F = M 0 (F ) – вектор-момент силы F относительно неподвижного центра O . Вектор k 0 ⊥ плоскости (r , m V ), а вектор M 0 (F ) ⊥ плоскости (r ,F ), окончательно имеем

dk 0 /dt = M 0 (F ) . (3.4)

Уравнение (3.4) выражает теорему об изменении момента количества движения (кинетического момента) материальной точки относительно центра: производная по времени от момента количества движения (кинетического момента) материальной точки относительно какого-либо неподвижного центра равна моменту действующей на точку силы относительно того же центра.

Проецируя равенство (3.4) на оси декартовых координат, получаем

dk x /dt = M x (F ); dk y /dt = M y (F ); dk z /dt = M z (F ) . (3.5)

Равенства (3.5) выражают теорему об изменении момента количества движения (кинетического момента) материальной точки относительно оси: производная по времени от момента количества движения (кинетического момента) материальной точки относительно какой-либо неподвижной оси равна моменту действующей на эту точку силы относительно той же оси.

Рассмотрим следствия, вытекающие из теорем (3.4) и (3.5).

Следствие 1. Рассмотрим случай, когда сила F во все время движения точки проходит через неподвижный центр O (случай центральной силы), т.е. когда M 0 (F ) = 0. Тогда из теоремы (3.4) следует, что k 0 = const ,

т.е. в случае центральной силы момент количества движения (кинетический момент) материальной точки относительно центра этой силы остается постоянным по модулю и направлению (рисунок 3.2).

Рисунок 3.2

Из условия k 0 = const следует, что траектория движущейся точки представляет собой плоскую кривую, плоскость которой проходит через центр этой силы.

Следствие 2. Пусть M z (F ) = 0, т.е. сила пересекает ось z или ей параллельна. В этом случае, как это видно из третьего из уравнений (3.5), k z = const ,

т.е. если момент действующей на точку силы относительно какой-либо неподвижной оси всегда равен нулю, то момент количества движения (кинетический момент) точки относительно этой оси остается постоянным.

Доказательство теоремы обь ихменении количества движения

Пусть система состоит из материальных точек с массами и ускорениями . Все силы, действующие на тела системы, разделим на два вида:

Внешние силы - силы, действующие со стороны тел, не входящих в рассматриваемую систему. Равнодействующую внешних сил, действующих на материальную точку с номером i обозначим .

Внутренние силы - силы, с которыми взаимодействуют друг с другом тела само́й системы. Силу, с которой на точку с номером i действует точка с номером k , будем обозначать , а силу воздействия i -й точки на k -ю точку - . Очевидно, что при , то

Используя введённые обозначения, запишем второй закон Ньютона для каждой из рассматриваемых материальных точек в виде

Учитывая, что и суммируя все уравнения второго закона Ньютона, получаем:

Выражение представляет собой сумму всех внутренних сил, действующих в системе. По третьему закону Ньютона в этой сумме каждой силе соответствует сила такая, что и, значит, выполняется Поскольку вся сумма состоит из таких пар, то и сама сумма равна нулю. Таким образом, можно записать

Используя для количества движения системы обозначение , получим

Введя в рассмотрение изменение импульса внешних сил , получим выражение теоремы об изменении количества движения системы в дифференциальной форме:

Таким образом, каждое из последних полученных уравнений позволяет утверждать: изменение количества движения системы происходит только в результате действия внешних сил, а внутренние силы никакого влияния на эту величину оказать не могут.

Проинтегрировав обе части полученного равенства по произвольно взятому промежутку времени между некоторыми и , получим выражение теоремы об изменении количества движения системы в интегральной форме:

где и - значения количества движения системы в моменты времени и соответственно, а - импульс внешних сил за промежуток времени . В соответствии со сказанным ранее и введёнными обозначениями выполняется

Количество движения системы, как векторная величина, определяется формулами (4.12) и (4.13).

Теорема. Производная от количества движения системы по времени равна геометрической сумме всех действующих на нее внешних сил.

В проекциях декартовые оси получим скалярные уравнения.

Можно записать векторное

(4.28)

и скалярные уравнения

Которые выражают теорему об изменении количества движения системы в интегральной форме: изменение количества движения системы за некоторый промежуток времени равно сумме импульсов за тот же промежуток времени. При решении задач чаще используются уравнения (4.27)

Закон сохранения количества движения

Теорема об изменении кинетического момента

Теорема об изменении момента количества движения точки относительно центра: производная по времени от момента количества движения точки относительно неподвижного центра равна векторному моменту, действующей на точку силы относительно того же центра.

или (4.30)

Сравнивая (4.23) и (4.30), видим, что моменты векторов и связаны такой же зависимостью, какой связаны сами векторы и (рис. 4.1). Если спроектировать равенство на ось , проходящую через центр О, то получим

(4.31)

Это равенство выражает теорему момента количества движения точки относительно оси.

Рис. 4.1.
Теорема об изменении главного момента количества движения или кинетического момента механической системы относительно центра: производная по времени от кинетического момента системы относительно некоторого неподвижного центра равно сумме моментов всех внешних сил относительно того же центра.

(4.32)

Если спроектировать выражение (4.32) на ось , проходящей через центр О, то получим равенство, характеризующее теорему об изменении кинетического момента относительно оси.

(4.33)

Подставляя (4.10) в равенство (4.33) можно записать дифференциальное уравнение вращающегося твердого тела (колес, осей, валов, роторов и т.д.) в трех формах.

(4.34)

(4.35)

(4.36)

Таким образом, теорему об изменении кинетического момента целесообразно использовать для исследования весьма распространенного в технике движения твердого тела, его вращения вокруг неподвижной оси.

Закон сохранения кинетического момента системы

1. Пусть в выражении (4.32) .

Тогда из уравнения (4.32) следует, что , т.е. если сумма моментов всех приложенных к системе вешних сил относительно данного центра равно нулю, то кинетический момент системы относительно этого центра будет численно и по направлению будет постоянен.

2. Если , то . Таким образом, если сумма моментов действующих на систему внешних сил относительно некоторой оси равна нулю, то кинетический момент системы относительно этой оси будет величиной постоянной.

Эти результаты выражают собой закон сохранения кинетического момента.

В случае вращающегося твердого тела из равенства (4.34) следует, что, если , то . Отсюда приходим к следующим выводам:

Если система неизменяема (абсолютно твердое тело), то , следовательно, и и твердое тело вращается вокруг неподвижной оси с постоянной угловой скоростью.

Если система изменяема, то . При увеличении (тогда отдельные элементы системы удаляются от оси вращения) угловая скорость уменьшается, т.к. , а при уменьшении увеличивается, таким образом, в случае изменяемой системы с помощью внутренних сил можно изменить угловую скорость.

Вторая задача Д2 контрольной работы посвящена теореме об изменении кинетического момента системы относительно оси.

Задача Д2

Однородная горизонтальная платформа (круглая радиуса R или прямоугольная со сторонами R и 2R, где R = 1,2м) массой кг вращается с угловой скоростью вокруг вертикальной оси z, отстоящей от центра масс C платформы на расстоянии OC = b (рис. Д2,0 – Д2,9, табл. Д2); размеры для всех прямоугольных платформ показаны на рис. Д2,0а (вид сверху).

В момент времени по желобу платформы начинает двигаться (под действием внутренних сил) груз D массой кг по закону , где s выражено в метрах, t - в секундах. Одновременно на платформы начинает действовать пара сил с моментом M (задан в ньютонометрах; при M < 0 его направление противоположно показанному на рисунках).

Определить, пренебрегая массой вала, зависимость т.е. угловую скорость платформы, как функцию времени.

На всех рисунках груз D показан в положении, при котором s > 0 (когда s < 0, груз находится по другую сторону от точки А). Изображая чертеж решаемой задачи, провести ось z на заданном расстоянии OC = b от центра C.

Указания. Задача Д2 – на применение теоремы об изменении кинетического момента системы. При применении теоремы к системе, состоящей из платформы и груза, кинетический момент системы относительно оси z определяется как сумма моментов платформы и груза. При этом следует учесть, что абсолютная скорость груза складывается из относительной и переносной скоростей, т.е. . Поэтому и количество движения этого груза . Тогда можно воспользоваться теоремой Вариньона (статика), согласно которой ; эти моменты вычисляются так же, как моменты сил. Подробнее ход решения разъяснен в примере Д2.

При решении задачи полезно изобразить на вспомогательном чертеже вид на платформу сверху (с конца z), как это сделано на рис. Д2,0,а – Д2,9, а.

Момент инерции пластины с массой m относительно оси Cz, перпендикулярной пластине и проходящей через ее центр масс, равен: для прямоугольной пластины со сторонами и

;

Для круглой пластины радиуса R


Номер условия b s = F(t) M
R R/2 R R/2 R R/2 R R/2 R R/2 -0.4 0.6 0.8 10 t 0.4 -0.5t -0.6t 0.8t 0.4 0.5 4t -6 -8t -9 6 -10 12

Рис. Д2.0
Рис. Д2.0а

Рис. Д2.1
Рис. Д2.1а

Рис. Д2.2
Рис. Д2.2а

Рис. Д2.3
Рис. Д2.3а

Рис. Д2.4
Рис. Д2.4а

Рис. Д2.5а
Рис. Д2.5

Рис. Д2.6
Рис. Д2.6а

Рис. Д2.7
Рис. Д2.7а

Рис. Д2.8
Рис. Д2.8а

Рис. Д2.9
Рис. Д2.9а

Рис. Д2

Пример Д2 . Однородная горизонтальная платформа (прямоуголь­ная со сторонами 2l и l), имеющая массу жестко скреплена с вертикальным валом и вращается вместе с ним вокруг оси z с угло­вой скоростью (рис. Д2а). В момент времени на вал начинает действовать вращающий момент М, направленный противо­положно ; одновременно груз D массой , находящийся в желобе АВ в точке С, начинает двигаться по желобу (под действием внутрен­них сил) по закону s = CD = F(t).

Дано: m 1 = 16 кг, т 2 = 10 кг, l = 0,5 м, = 2 , s = 0,4t 2 (s - в метрах, t - в секундах), М = kt, где k =6 Нм/с. Опре­делить: - закон изменения угловой скорости платформы.

Решение. Рассмотрим механическую систему, состоящую из плат­формы и груза D. Для определения w применим теорему об изменении кинетического момента системы относительно оси z:

(1)

Изобразим действующие на систему внешние силы: силы тяжести реакции и вращающий момент M. Так как силы и параллельны оси z, а реакции и эту ось пересекают, то их моменты относительно оси z равны нулю. Тогда, считая для момента положительным направление (т. е. против хода часовой стрелки), получим и уравнение (1) примет такой вид.

  • 1. Алгебраический момент количества движения относительно центра. Алгебраический О -- скалярная величина, взятая со знаком (+) или (-) и равная произведению модуля количества движения m на расстояние h (перпендикуляр) от этого центра до линии, вдоль которой направлен вектор m :
  • 2. Векторный момент количества движения относительно центра.

Векторный момент количества движения материальной точки относительно некоторого центра О -- вектор, приложенный в этом центре и направленный перпендикулярно плоскости векторов m и в ту сторону, откуда движение точки видно против хода часовой стрелки. Это определение удовлетворяет векторному равенству


Моментом количества движения материальной точки относительно некоторой оси z называется скалярная величина, взятая со знаком (+) или (-) и равная произведению модуля проекции вектора количества движения на плоскость, перпендикулярную этой оси, на перпендикуляр h, опущенный из точки пересечения оси с плоскостью на линию, вдоль которой направлена указанная проекция:

Кинетический момент механической системы относительно центра и оси

1. Кинетический момент относительно центра.

Кинетическим моментом или главным моментом количеств движения механической системы относительно некоторого центра называется геометрическая сумма моментов количеств движения всех материальных точек системы относительно того же центра.

2. Кинетический момент относительно оси.

Кинетическим моментом или главным моментом количеств движения механической системы относительно некоторой оси называется алгебраическая сумма моментов количеств движения всех материальных точек системы относительно той же оси.

3. Кинетический момент твердого тела, вращающегося вокруг неподвижной оси z с угловой скоростью.

Теорема об изменении момента количества движения материальной точки относительно центра и оси

1. Теорема моментов относительно центра.

Производная по времени от момента количества движения материальной точки относительно некоторого неподвижного центра равна моменту силы, действующей на точку, относительно того же центра

2. Теорема моментов относительно оси.

Производная по времени от момента количества движения материальной точки относительно некоторой оси равна моменту силы, действующей на точку, относительно той же оси

Теорема об изменении кинетического момента механической системы относительно центра и оси

Теорема моментов относительно центра.

Производная по времени от кинетического момента механической системы относительно некоторого неподвижного центра равна геометрической сумме моментов всех внешних сил, действующих на систему, относительно того же центра;

Следствие. Если главный момент внешних сил относительно некоторого центра равен нулю, то кинетический момент системы относительно этого центра не изменяется (закон сохранения кинетического момента).

2. Теорема моментов относительно оси.

Производная по времени от кинетического момента механической системы относительно некоторой неподвижной оси равна сумме моментов всех внешних сил, действующих на систему, относительно этой оси

Следствие. Если главный момент внешних сил относительно некоторой оси равен нулю, то кинетический момент системы относительно этой оси не изменяется.

Например, = 0, тогда L z = const.

Работа и мощность сил

Работа силы -- скалярная мера действия силы.

1. Элементарная работа силы.

Элементарная работа силы -- это бесконечно малая скалярная величина, равная скалярному произведению вектора силы на вектор бесконечного малого перемещения точки приложения силы: ; - приращение радиуса-вектора точки приложения силы, годографом которого является траектория этой точки. Элементарное перемещение точки по траектории совпадает с в силу их малости. Поэтому

если то dA > 0;если, то dA = 0;если , то dA < 0.

2. Аналитическое выражение элементарной работы.

Представим векторы и d через их проекции на оси декартовых координат:

, . Получим (4.40)

3. Работа силы на конечном перемещении равна интегральной сумме элементарных работ на этом перемещении

Если сила постоянная, а точка ее приложения перемещается прямолинейно,

4. Работа силы тяжести. Используем формулу:Fx = Fy = 0; Fz = -G = -mg;

где h- перемещение точки приложения силы по вертикали вниз (высота).

При перемещении точки приложения силы тяжести вверх A 12 = -mgh (точка М 1 -- внизу, M 2 -- вверху).

Итак,. Работа силы тяжести не зависит от формы траектории. При движении по замкнутой траектории (M 2 совпадает с М 1 ) работа равна нулю.

5. Работа силы упругости пружины.

Пружина растягивается только вдоль оси х:

F y = F z = О, F x = = -сх;

где - величина деформации пружины.

При перемещении точки приложения силы из нижнего положения в верхнее направление силы и направление перемещения совпадают, тогда

Поэтому работа силы упругости

Работа сил на конечном перемещении; Если = const, то

где - конечный угол поворота; , где п -- число оборотов тела вокруг оси.

Кинетическая энергия материальной точки и механической системы. Теорема Кенига

Кинетическая энергия - скалярная мера механического движения.

Кинетическая энергия материальной точки - скалярная положительная величина, равная половине произведения массы точки на квадрат ее скорости,

Кинетическая энергия механической системы -- арифметическая сумма кинетических энергий всех материал точек этой системы:

Кинетическая энергия системы, состоящей из п связанных между собой тел, равна арифметической сумме кинетических энергий всех тел этой системы:

Теорема Кенига

Кинетическая энергия механической системы в общем случае ее движения равна сумме кинетической энергии движения системы вместе с центром масс и кинетической энергии системы при ее движении относительно центра масс:

где Vkc -- скорость k- й точки системы относительно центра масс.

Кинетическая энергия твердого тела при различном движении

Поступательное движение.

Вращение тела вокруг неподвижной оси . ,где -- момент инерции тела относительно оси вращения.

3. Плоскопараллельное движение. , где - момент инерции плоской фигуры относительно оси, проходящей через центр масс.

При плоском движении тела кинетическая энергия складывается из кинетической энергии поступательного движения тела со скоростью центра масс и кинетической энергии вращательного движения вокруг оси, проходящей через центр масс, ;

Теорема об изменении кинетической энергии материальной точки

Теорема в дифференциальной форме.

Дифференциал от кинетической энергии материальной точки равен элементарной работе силы, действующей на точку,

Теорема в интегральной (конечной) форме.

Изменение кинетической энергии материальной точки на некотором перемещении равно работе силы, действующей на точку, на том же перемещении.

Теорема об изменении кинетической энергии механической системы

Теорема в дифференциальной форме.

Дифференциал от кинетической энергии механической системы равен сумме элементарных работ внешних и внутренних сил, действующих на систему.

Теорема в интегральной {конечной) форме.

Изменение кинетической энергии механической системы на некотором перемещении равно сумме работ внешних и внутренних сил, приложенных к системе, на том же перемещении. ; Для системы твердых тел = 0 (по свойству внутренних сил). Тогда

Закон сохранения механической энергии материальной точки и механической системы

Если на материальную точку или механическую систему действуют только консервативные силы, то в любом положении точки или системы сумма кинетической и потенциальной энергий остается величиной постоянной.

Для материальной точки

Для механической системы Т+ П= const

где Т+ П -- полная механическая энергия системы.

Динамика твердого тела

Дифференциальные уравнения движения твердого тела

Эти уравнения можно получить из общих теорем динамики механической системы.

1. Уравнения поступательного движения тела -- из теоремы о движении центра масс механической системы В проекциях на оси декартовых координат

2. Уравнение вращения твердого тела вокруг неподвижной оси - из теоремы об изменении кинетического момента механической системы относительно оси, например, относительно оси

Так как кинетический момент L z твердого тела относительно оси, то если

Так как или, то уравнение можно записать в виде или,форма записи уравнения зависит от того, что следует определить в конкретной задаче.

Дифференциальные уравнения плоскопараллельного движения твердого тела представляют собой совокупность уравнений поступательного движения плоской фигуры вместе с центром масс и вращательного движения относительно оси, проходящей через центр масс:

Физический маятник

Физическим маятником называется твердое тело, вращающееся вокруг горизонтальной оси, не проходящей через центр масс тела, и движущееся под действием силы тяжести.

Дифференциальное уравнение вращения

В случае малых колебаний.

Тогда, где

Решение этого однородного уравнения.

Пусть при t=0 Тогда

-- уравнение гармонических колебаний.

Период колебаний маятника

Приведенная длина физического маятника -- это длина такого математического маятника, период колебаний которого равен периоду колебаний физического маятника.

Количеством, движения системы будем называть векторную величину Q, равную геометрической сумме (главному вектору) количеств движения всех точек системы (рис. 288):

Пользуясь этим определением, найдем формулу, с помощью которой значительно легче вычислять величину Q, а также уяснить ее смысл. Из равенства (Г) следует, что

Беря от обеих частей производную по времени, получим

Отсюда находим, что

т. е. количество движения системы равно произведению массы всей системы на скорость ее центра масс.

Этим результатом особенно удобно пользоваться при вычислении количеств движения твердых тел.

Из формулы (19) видно, что если тело (или система) движется так, что центр масс остается неподвижным, то количество движения тела равно нулю. Например, количество движения тела, вращающегося вокруг неподвижной оси, проходящей через его центр масс, будет равно нулю.

Если же движение тела является сложным, то величина Q не будет зависеть от его вращательного движения вокруг центра масс. Например, для катящегося колеса независимо от того, как вращается колесо вокруг его центра масс С.

Таким образом, количество движения можно рассматривать как характеристику поступательного движения системы (тела), а при сложном движении - как характеристику поступательной части движения вместе с центром масс.