Калькулятор системных неравенств. Системы неравенств – начальные сведения

Неравенство - это два числа или математических выражения, соединённых одним из знаков: > (больше, в случае строгих неравенств), < (меньше, в случае строгих неравенств), ≥ (больше или равно, в случае нестрогих неравенств), ≤ (меньше или равно, в случае нестрогих неравенств).

Неравенство является линейным при тех же условиях, что и уравнение: оно содержит переменные только в первой степени и не содержит произведений переменных.

Решение линейных неравенств и систем линейных неравенств неразрывно связано с их геометрическим смыслом: решением линейного неравенства является некоторая полуплоскость, на которые всю плоскость делит прямая, уравнением которой задано линейное неравенство. Эту полуплоскость, а в случае системы линейных неравенств - часть плоскости, ограниченную несколькими прямыми, требуется найти на чертеже.

К решению систем линейных неравенств с большим числом переменных сводятся многие экономические задачи, в частности, задачи линейного программирования , в которых требуется найти максимум или минимум функции.

Решение систем линейных неравенств с любым числом неизвестных

Сначала разберём линейные неравенства на плоскости. Рассмотрим одно неравенство с двумя переменными и :

,

где - коэффициенты при переменных (некоторые числа), - свободный член (также некоторое число).

Одно неравенство с двумя неизвестными, так же как и уравнение, имеет бесчисленное множество решений. Решением данного неравенства назовём пару чисел , удовлетворяющих этому неравенству. Геометрически множество решений неравенства изображается в виде полуплоскости, ограниченной прямой

,

которую назовём граничной прямой.

Шаг 1. Построить прямую, ограничивающую множество решений линейного неравенства

Для этого надо знать какие-либо две точки этой прямой. Найдём точки пересечения с осями координат. Ордината точки пересечения A равна нулю (рисунок 1). Числовые значения на осях на этом рисунке относятся к примеру 1, который разберём сразу после этого теретического экскурса.

Абсциссу найдём, решая как систему уравнение прямой с уравнением оси .

Найдём пересечение с осью :

Подставляя значение в первое уравнение, получаем

Откуда .

Таким образом, нашли абсциссу точки A .

Найдём координаты точки пересечения с осью .

Абсцисса точки B равна нулю. Решим уравнение граничной прямой с уравнением оси координат:

,

следовательно, координаты точки B : .

Шаг 2. Начертить прямую, ограничивающую множество решений неравенства. Зная точки A и B пересечения граничной прямой с осями координат, можем начертить эту прямую. Прямая (снова рисунок 1) делит всю плоскость на две части, лежащие справа и слева (выше и ниже) от этой прямой.

Шаг 3. Установить, которая из полуплоскостей является решением данного неравенства. Для этого нужно в это неравенство подставить начало координат (0; 0). Если координаты начала удовлетворяют неравенству, то решением неравенства является полуплоскость, в которой находится начало координат. Если же координаты не удовлетворяют неравенству, то решением неравенства является полуплоскость, которая не содержит начала координат. Полуплоскость решения неравенства будем обозначать штрихами от прямой внутрь полуплоскости, как на рисунке 1.

Если решаем систему линейных неравенств , то каждый шаг выполняется для каждого из неравенств системы.

Пример 1. Решить неравенство

Решение. Начертим прямую

Подставив в уравнение прямой , получим , а подставив , получим . Следовательно, координаты точек пересечения с осями будут A (3; 0) , B (0; 2) . Через эти точки проведём прямую (опять рисунок 1).

Выберем полуплоскость решений неравенства. Для этого в неравенство подставим координаты начала (0; 0) :

получим , т. е. координаты начала удовлетворяют данному неравенству. Следовательно, решением неравенства является полуплоскость, содержащая в себе начало координат, т. е. левая (она же нижняя) полуплоскость.

Если бы данное неравенство было строгим, то есть имело бы вид

то точки граничной прямой не являлись бы решением, так как они не удовлетворяют неравенству.

Теперь рассмотрим систему линейных неравенств с двумя неизвестными:

Каждое из неравенств этой системы на плоскости определяет полуплоскость. Система линейных неравенств называется совместной, если она имеет хотя бы одно решение, и несовместной, если она не имеет решений. Решением системы линейных неравенств называется любая пара чисел (), удовлетворяющая всем неравенствам данной системы.

Геометрически решением системы линейных неравенств является множество точек, удовлетворяющих всем неравенствам системы, то есть, общая часть получаемых полуплоскостей. Поэтому геометрически в общем случае решение может быть изображено в виде некоторого многоугольника, в частном случае - может быть линия, отрезок и даже точка. Если система линейных неравенств несовместна, то на плоскости не существует ни одной точки, удовлетворяющей всем неравенствам системы.

Пример 2.

Решение. Итак, требуется найти многоугольник решений этой системы неравенств. Построим граничную прямую для первого неравенства, то есть прямую , и граничную прямую для второго неравенства, то есть прямую .

Делаем это пошагово, как было показано в теоретической справке и в примере 1, тем более, что в примере 1 строили граничную прямую для неравенства, которое является первым в данной системе.

Полуплоскости решений, соответствующие неравенствам данной системы, на рисунке 2 заштрихованы вовнутрь. Общая часть полуплоскостей решений представляет собой открытый угол ABC . Это означает, что множество точек плоскости, составляющих открытый угол ABC , является решением как первого, так и второго неравенства системы, то есть, является решением системы двух линейных неравенств. Иначе говоря, кординаты любой точки из этого множества удовлетворяют обоим неравенствам системы.

Пример 3. Решить систему линейных неравенств

Решение. Построим граничные прямые, соответствующие неравенствам системы. Делаем это, выполняя шаги, данные в теоретической справке, для каждого неравенства. Теперь определим полуплоскости решений для каждого неравенства (рисунок 3).

Полуплоскости решений, соответствующие неравенствам данной системы, заштрихованы вовнутрь. Пересечение полуплоскостей решений изображается, как показано на рисунке, в виде четырёхугольника ABCE . Получили, что многоугольник решений системы линейных неравенств с двумя переменными является четырёхугольником ABCE .

Всё описанное выше о системах линейных неравенств с двумя неизвестными относится и к системе неравенств с любым числом неизвестных, с той лишь разницей, что решением неравенства с n неизвестными будет совокупность n чисел (), удовлетворяющих всем неравенствам, а вместо граничной прямой будет граничная гиперплоскость n -мерного пространства. Решением будет многогранник решений (симплекс), ограниченный гиперплоскостями.

На этом уроке мы начнем изучение систем неравенств. Вначале будем рассматривать системы линейных неравенств. В начале урока рассмотрим, откуда и зачем возникают системы неравенств. Далее изучим, что значит решить систему, и вспомним объединение и пересечение множеств. В конце будем решать конкретные примеры на системы линейных неравенств.

Тема : Рацион альные неравенства и их системы

Урок: Основн ые понятия, решение систем линейных неравенств

До сих пор мы решали отдельные неравенства и применяли к ним метод интервалов, это могли быть и линейные неравенства , и квадратные и рациональные. Теперь перейдем к решению систем неравенств - сначала линейных систем . Посмотрим на примере, откуда берется необходимость рассматривать системы неравенств.

Найти область определения функции

Найти область определения функции

Функция существует, когда существуют оба квадратних корня, т.е.

Как решать такую систему? Необходимо найти все x, удовлетворяющие и первому и второму неравенству.

Изобразим на оси ox множество решений первого и второго неравенства.

Промежуток пересечения двух лучей и есть наше решение.

Такой метод изображения решения системы неравенств иногда называют методом крыш.

Решением системы является пересечение двух множеств.

Изобразим это графически. Имеем множество А произвольной природы и множество В произвольной природы, которые пересекаются.

Определение: Пересечением двух множеств А и В называется такое третье множество, которое состоит из всех элементов, входящих и в А и в В.

Рассмотрим на конкретных примерах решения линейных систем неравенств, как находить пересечения множеств решений отдельных неравенств, входящих в систему.

Решить систему неравенств:

Ответ: (7; 10].

4. Решить систему

Откуда может взяться второе неравенство системы? Например, из неравенства

Графически обозначим решения каждого неравенства и найдем промежуток их пересечения.

Таким образом, если мы имеем систему, в которой одно из неравенств удовлетворяет любому значению x, то его можно исключить.

Ответ: система противоречива.

Мы рассмотрели типовые опорные задачи, к которым сводится решение любой линейной системы неравенств.

Рассмотрим следующую систему.

7.

Иногда линейная система задается двойным неравенством, рассмотрим такой случай.

8.

Мы рассмотрели системы линейных неравенств, поняли, откуда они появляются, рассмотрели типовые системы, к которым сводятся все линейные системы, и решили некоторые из них.

1. Мордкович А.Г. и др. Алгебра 9 кл.: Учеб. Для общеобразоват. Учреждений.- 4-е изд. - М.: Мнемозина, 2002.-192 с.: ил.

2. Мордкович А.Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М.: Мнемозина, 2002.-143 с.: ил.

3. Макарычев Ю. Н. Алгебра. 9 класс: учеб. для учащихся общеобразоват. учреждений / Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, И. Е. Феоктистов. — 7-е изд., испр. и доп. — М.: Мнемозина, 2008.

4. Алимов Ш.А., Колягин Ю.М., Сидоров Ю.В. Алгебра. 9 класс. 16-е изд. - М., 2011. - 287 с.

5. Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. — 12-е изд., стер. — М.: 2010. — 224 с.: ил.

6. Алгебра. 9 класс. В 2 ч. Ч. 2. Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Л. А. Александрова, Т. Н. Мишустина и др.; Под ред. А. Г. Мордковича. — 12-е изд., испр. — М.: 2010.-223 с.: ил.

1. Портал Естественных Наук ().

2. Электронный учебно-методический комплекс для подготовки 10-11 классов к вступительным экзаменам по информатике, математике, русскому языку ().

4. Центр образования «Технология обучения» ().

5. Раздел College.ru по математике ().

1. Мордкович А.Г. и др. Алгебра 9 кл.: Задачник для учащихся общеобразовательных учреждений / А. Г. Мордкович, Т. Н. Мишустина и др. — 4-е изд. — М. : Мнемозина, 2002.-143 с.: ил. №№ 53; 54; 56; 57.

Программа для решения линейных, квадратных и дробных неравенств не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс решения для того чтобы проконтролировать знания по математике и/или алгебре.

Причём, если в процессе решения одного из неравенств нужно решить, например, квадратное уравнение, то его подробное решение также выводится (оно заключается в спойлер).

Данная программа может быть полезна учащимся старших классов при подготовке к контрольным работам, родителям для контроля решения неравенств их детьми.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Правила ввода неравенств

В качестве переменной может выступать любая латинсая буква.
Например: \(x, y, z, a, b, c, o, p, q \) и т.д.

Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5x - 3,5x^2

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 3&1/3 - 5&6/5y +1/7y^2
Результат: \(3\frac{1}{3} - 5\frac{6}{5} y + \frac{1}{7}y^2 \)

При вводе выражений можно использовать скобки. В этом случае при решении неравенства выражения сначала упрощаются.
Например: 5(a+1)^2+2&3/5+a > 0,6(a-2)(a+3)

Выберите нужный знак неравенства и введите многочлены в поля ниже.

Первое неравенство системы.

Нажмите на кнопку для изменения типа первого неравенства.


> >= < <=
Решить систему неравенств

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Системы неравенств с одним неизвестным. Числовые промежутки

С понятием системы вы познакомились в 7 классе и научились решать системы линейных уравнений с двумя неизвестными. Далее будут рассмотрены системы линейных неравенств с одним неизвестным. Множества решений систем неравенств могут записываться с помощью промежутков (интервалов, полуинтервалов, отрезков, лучей). Также вы познакомитесь обозначениями числовых промежутков.

Если в неравенствах \(4x > 2000 \) и \(5x \leq 4000 \) неизвестное число х одно и то же, то эти неравенства рассматривают совместно и говорят, что они образуют систему неравенств: $$ \left\{\begin{array}{l} 4x > 2000 \\ 5x \leq 4000 \end{array}\right. $$

Фигурная скобка показывает, что нужно найти такие значения х, при которых оба неравенства системы обращаются в верные числовые неравенства. Данная система - пример системы линейных неравенств с одним неизвестным.

Решением системы неравенств с одним неизвестным называется то значение неизвестного, при котором все неравенства системы обращаются в верные числовые неравенства. Решить систему неравенств - это значит найти все решения этой системы или установить, что их нет.

Неравенства \(x \geq -2 \) и \(x \leq 3 \) можно записать в виде двойного неравенства: \(-2 \leq x \leq 3 \).

Решениями систем неравенств с одним неизвестным являются различные числовые множества. Эти множества имеют названия. Так, на числовой оси множество чисел х, таких, что \(-2 \leq x \leq 3 \), изображается отрезком с концами в точках -2 и 3.

-2 3

Если \(a отрезком и обозначается [а; b]

Если \(a интервалом и обозначается (а; b)

Множества чисел \(x \), удовлетворяющих неравенствам \(a \leq x полуинтервалами и обозначаются соответственно [а; b) и (а; b]

Отрезки, интервалы, полуинтервалы и лучи называют числовыми промежутками .

Таким образом, числовые промежутки можно задавать в виде неравенств.

Решением неравенства с двумя неизвестными называется пара чисел (х; у), обращающая данное неравенство в верное числовое неравенство. Решить неравенство - это значит найти множество всех его решений. Так, решениями неравенства х > у будут, например, пары чисел (5; 3), (-1; -1), так как \(5 \geq 3 \) и \(-1 \geq -1\)

Решение систем неравенств

Решать линейные неравенства с одним неизвестным вы уже научились. Знаете, что такое система неравенств и решение системы. Поэтому процесс решения систем неравенств с одним неизвестным не вызовет у вас затруднений.

И все же напомним: чтобы решить систему неравенств, нужно решить каждое неравенство по отдельности, а затем найти пересечение этих решений.

Например, исходная система неравенств была приведена к виду:
$$ \left\{\begin{array}{l} x \geq -2 \\ x \leq 3 \end{array}\right. $$

Чтобы решить эту систему неравенств, отметим решение каждого неравенства на числовой оси и найдём их пересечение:

-2 3

Пересечением является отрезок [-2; 3] - это и есть решение исходной системы неравенств.

см. также Решение задачи линейного программирования графически , Каноническая форма задач линейного программирования

Система ограничений такой задачи состоит из неравенств от двух переменных:
и целевая функция имеет вид F = C 1 x + C 2 y , которую необходимо максимизировать.

Ответим на вопрос: какие пары чисел ( x ; y ) являются решениями системы неравенств, т. е. удовлетворяют каждому из неравенств одновременно? Другими словами, что значит решить систему графически?
Предварительно необходимо понять, что является решением одного линейного неравенства с двумя неизвестными.
Решить линейное неравенство с двумя неизвестными – это значит определить все пары значений неизвестных, при которых неравенство выполняется.
Например, неравенству 3x – 5 y ≥ 42 удовлетворяют пары (x , y ) : (100, 2); (3, –10) и т. д. Задача состоит в нахождении всех таких пар.
Рассмотрим два неравенства: ax + by c , ax + by c . Прямая ax + by = c делит плоскость на две полуплоскости так, что координаты точек одной из них удовлетворяют неравенству ax + by >c , а другой неравенству ax + +by <c .
Действительно, возьмем точку с координатой x = x 0 ; тогда точка, лежащая на прямой и имеющая абсциссу x 0 , имеет ординату

Пусть для определенности a < 0, b >0, c >0. Все точки с абсциссой x 0 , лежащие выше P (например, точка М ), имеют y M >y 0 , а все точки, лежащие ниже точки P , с абсциссой x 0 , имеют y N <y 0 . Поскольку x 0 –произвольная точка, то всегда с одной стороны от прямой будут находиться точки, для которых ax + by > c , образующие полуплоскость, а с другой стороны – точки, для которых ax + by < c .

Рисунок 1

Знак неравенства в полуплоскости зависит от чисел a , b , c .
Отсюда вытекает следующий способ графического решения систем линейных неравенств от двух переменных. Для решения системы необходимо:

  1. Для каждого неравенства выписать уравнение, соответствующее данному неравенству.
  2. Построить прямые, являющиеся графиками функций, задаваемых уравнениями.
  3. Для каждой прямой определить полуплоскость, которая задается неравенством. Для этого взять произвольную точку, не лежащую на прямой, подставить ее координаты в неравенство. если неравенство верное, то полуплоскость, содержащая выбранную точку, и является решением исходного неравенства. Если неравенство неверное, то полуплоскость по другую сторону прямой является множеством решений данного неравенства.
  4. Чтобы решить систему неравенств, необходимо найти область пересечения всех полуплоскостей, являющихся решением каждого неравенства системы.

Эта область может оказаться пустой, тогда система неравенств не имеет решений, несовместна. В противном случае говорят, что система совместна.
Решений может быть конечное число и бесконечное множество. Область может представлять собой замкнутый многоугольник или же быть неограниченной.

Рассмотрим три соответствующих примера.

Пример 1. Решить графически систему:
x + y – 1 ≤ 0;
–2 x – 2y + 5 ≤ 0.

  • рассмотрим уравнения x+y–1=0 и –2x–2y+5=0 , соответствующие неравенствам;
  • построим прямые, задающиеся этими уравнениями.

Рисунок 2

Определим полуплоскости, задаваемые неравенствами. Возьмем произвольную точку, пусть (0; 0). Рассмотрим x + y– 1 0, подставим точку (0; 0): 0 + 0 – 1 ≤ 0. значит, в той полуплоскости, где лежит точка (0; 0), x + y 1 ≤ 0, т.е. полуплоскость, лежащая ниже прямой, является решением первого неравенства. Подставив эту точку (0; 0), во второе, получим: –2 ∙ 0 – 2 ∙ 0 + 5 ≤ 0, т.е. в полуплоскости, где лежит точка (0; 0), –2x – 2y + 5≥ 0, а нас спрашивали, где –2x – 2y + 5 ≤ 0, следовательно, в другой полуплоскости – в той, что выше прямой.
Найдем пересечение этих двух полуплоскостей. Прямые параллельны, поэтому плоскости нигде не пересекаются, значит система данных неравенств решений не имеет, несовместна.

Пример 2. Найти графически решения системы неравенств:

Рисунок 3
1. Выпишем уравнения, соответствующие неравенствам, и построим прямые.
x + 2y – 2 = 0

x 2 0
y 0 1

y x – 1 = 0
x 0 2
y 1 3

y + 2 = 0;
y = –2.
2. Выбрав точку (0; 0), определим знаки неравенств в полуплоскостях:
0 + 2 ∙ 0 – 2 ≤ 0, т.е. x + 2y – 2 ≤ 0 в полуплоскости ниже прямой;
0 – 0 – 1 ≤ 0, т.е. y x – 1 ≤ 0 в полуплоскости ниже прямой;
0 + 2 =2 ≥ 0, т.е. y + 2 ≥ 0 в полуплоскости выше прямой.
3. Пересечением этих трех полуплоскостей будет являться область, являющаяся треугольником. Нетрудно найти вершины области, как точки пересечения соответствующих прямых


Таким образом, А (–3; –2), В (0; 1), С (6; –2).

Рассмотрим еще один пример, в котором получившаяся область решения системы не ограничена.

Решение неравенств. Неравенства бывают разных видов и требуют разного подхода к их решению. Если вы не желаете тратить время и силы на решение неравенств или решили неравенство самостоятельно и хотите проверить, верный ли ответ вы получили, то предлагаем вам решать неравенства онлайн и воспользоваться для этого нашим сервисом Math24.su. Он решает как линейные, так и квадратные неравенства, в том числе иррациональные и дробные неравенства. Обязательно укажите обе части неравенства в соответствующих полях и выберете знак неравенства между ними, затем нажмите кнопку «Решение». Чтобы продемонстрировать как в сервисе реализовано решение неравенств, можно просмотреть различные виды примеров и их решений (выбираются справа от кнопки «Решение»). Сервис выдает как интервалы решения, так и целочисленные значения. Пользователи, которые попадают на Math24.su впервые, восхищаются высокой скоростью работы сервиса, ведь решить неравенства онлайн можно за считанные секунды, а пользоваться сервисом можно абсолютно бесплатно неограниченное количество раз. Работа сервиса автоматизирована, вычисление в нем делает программа, а не человек. Вам не нужно устанавливать себе на компьютер какое-либо программное обеспечение, регистрироваться, вводить личные данные или e-mail. Также исключены опечатки и ошибки в расчетах, полученному результату можно доверять на 100%. Преимущества решения неравенств онлайн. Благодаря высокой скорости и удобству использования сервис Math24.su стал надежным помощником многих школьников и студентов. Неравенства часто встречаются в школьных программах и курсе института по высшей математике и те, кто использует наш онлайн сервис, получают большие преимущества перед остальными. Math24.su доступен круглосуточно, не требует регистрации, платы за использование и вдобавок мультиязычен. Не стоит пренебрегать онлайн сервисом и тем, кто ищет решение неравенств самостоятельно. Ведь Math24.su – это отличная возможность проверить правильность своих вычислений, найти, где совершена ошибка, просмотреть, как решаются различные виды неравенств. Еще одна причина, по которой будет более рационально решать неравенства онлайн, это когда решение неравенств не является основной задачей, а только ее частью. В этом случае просто нет смысла тратить много времени и сил на вычисление, а лучше доверить его онлайн сервису, в то время как самому сосредоточиться на решении основной задачи. Как видно, онлайн сервис для решения неравенств будет полезен как тем, кто самостоятельно решает данный вид математических задач, так и тем, кто не хочет тратить время и усилия на длительные расчеты, а нуждается в быстром получении ответа. Поэтому, когда вы сталкиваетесь с неравенствами, то не забывайте использовать наш сервис, чтобы решать любые неравенства онлайн: линейные, квадратные, иррациональные, тригонометрические, логарифмические. Что такое неравенства и как они обозначаются. Неравенство выступает обратной стороной равенства и как понятие связано со сравнением двух объектов. В зависимости от характеристик сравниваемых объектов, мы говорим выше, ниже, короче, длиннее, толще, тоньше и т.д. В математике смысл неравенств не теряется, но здесь речь идет уже про неравенства математических объектов: числа, выражения, значения величин, фигур и т.д. Принято использовать несколько знаков неравенств: , ≤, ≥. Математические выражения с такими знаками и называют неравенствами. Знак > (больше) ставится между большим и меньшим объектами, Знак обозначают строгие неравенства. Нестрогие неравенства описывают ситуацию, когда одно выражение «не больше» («не меньше») другого. «Не больше» означает, что меньше или столько же, а «не меньше» значит, что больше или столько же.