Уравнения плоскости: общее, через три точки, нормальное. Графический метод. Координатная плоскость (x;a) Уравнение плоскости xy


Все уравнения плоскости, которые разобраны в следующих пунктах могут быть получены из общего уравнения плоскости, а также приведены к общему уравнению плоскости. Таким образом, когда говорят об уравнении плоскости, то имеют в виду общее уравнение плоскости, если не оговорено иное.

Уравнение плоскости в отрезках.

Уравнение плоскости вида , где a , b и c – отличные от нуля действительные числа, называется уравнением плоскости в отрезках .

Такое название не случайно. Абсолютные величины чисел a , b и c равны длинам отрезков, которые отсекает плоскость на координатных осях Ox , Oy и Oz соответственно, считая от начала координат. Знак чисел a , b и c показывает, в каком направлении (положительном или отрицательном) следует откладывать отрезки на координатных осях.

Для примера построим в прямоугольной системе координат Oxyz плоскость, определенную уравнением плоскости в отрезках . Для этого отмечаем точку, удаленную на 5 единиц от начала координат в отрицательном направлении оси абсцисс, на 4 единицы в отрицательном направлении оси ординат и на 4 единицы в положительном направлении оси аппликат. Осталось соединить эти точки прямыми линиями. Плоскость полученного треугольника и есть плоскость, соответствующая уравнению плоскости в отрезках вида .

Для получения более полной информации обращайтесь к статье уравнение плоскости в отрезках , там показано приведение уравнения плоскости в отрезках к общему уравнению плоскости, там же Вы также найдете подробные решения характерных примеров и задач.

Нормальное уравнение плоскости.

Общее уравнение плоскости вида называют нормальным уравнением плоскости , если равна единице, то есть, , и .

Часто можно видеть, что нормальное уравнение плоскости записывают в виде . Здесь - направляющие косинусы нормального вектора данной плоскости единичной длины, то есть , а p – неотрицательное число, равное расстоянию от начала координат до плоскости.

Нормальное уравнение плоскости в прямоугольной системе координат Oxyz определяет плоскость, которая удалена от начала координат на расстояние p в положительном направлении нормального вектора этой плоскости . Если p=0 , то плоскость проходит через начало координат.

Приведем пример нормального уравнения плоскости.

Пусть плоскость задана в прямоугольной системе координат Oxyz общим уравнение плоскости вида . Это общее уравнение плоскости является нормальным уравнением плоскости. Действительно, и нормальный вектор этой плоскости имеет длину равную единице, так как .

Уравнение плоскости в нормальном виде позволяет находить расстояние от точки до плоскости .

Рекомендуем более детально разобраться с данным видом уравнения плоскости, посмотреть подробные решения характерных примеров и задач, а также научиться приводить общее уравнение плоскости к нормальному виду. Это Вы можете сделать, обратившись к статье .

Список литературы.

  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Киселева Л.С., Позняк Э.Г. Геометрия. Учебник для 10-11 классов средней школы.
  • Бугров Я.С., Никольский С.М. Высшая математика. Том первый: элементы линейной алгебры и аналитической геометрии.
  • Ильин В.А., Позняк Э.Г. Аналитическая геометрия.

Чтобы получить общее уравнение плоскости, разберём плоскость, проходящую через заданную точку.

Пусть в пространстве есть три уже известные нам оси координат - Ox , Oy и Oz . Подержим лист бумаги так, чтобы он оставался плоским. Плоскостью будет сам лист и его продолжение во всех направлениях.

Пусть P произвольная плоскость в пространстве. Всякий перпендикулярный ей вектор называется вектором нормали к этой плоскости. Естественно, речь идёт о ненулевом векторе.

Если известна какая-нибудь точка плоскости P и какой-нибудь вектор нормали к ней, то этими двумя условиями плоскость в пространстве вполне определена (через заданную точку можно провести единственную плоскость, перпендикулярную данному вектору). Общее уравнение плоскости будет иметь вид:

Итак, условия, которыми задаётся уравнение плоскости, есть. Чтобы получить само уравнение плоскости , имеющее приведённый выше вид, возьмём на плоскости P произвольную точку M с переменными координатами x , y , z . Эта точка принадлежит плоскости только в том случае, когда вектор перпендикулярен вектору (рис. 1). Для этого, согласно условию перпендикулярности векторов, необходимо и достаточно, чтобы скалярное произведение этих векторов было равно нулю, то есть

Вектор задан по условию. Координаты вектора найдём по формуле :

.

Теперь, используя формулу скалярного произведения векторов , выразим скалярное произведение в координатной форме:

Так как точка M(x; y; z) выбрана на плоскости произвольно, то последнему уравнению удовлетворяют координаты любой точки, лежащей на плоскости P . Для точки N , не лежащей на заданной плоскости, , т.е. равенство (1) нарушается.

Пример 1. Составить уравнение плоскости, проходящей через точку и перпендикулярной вектору .

Решение. Используем формулу (1), еще раз посмотрим на неё:

В этой формуле числа A , B и C координаты вектора , а числа x 0 , y 0 и z 0 - координаты точки .

Вычисления очень простые: подставляем эти числа в формулу и получаем

Умножаем всё, что нужно умножить и складываем просто числа (которые без букв). Результат:

.

Требуемое уравнение плоскости в этом примере оказалось выражено общим уравнением первой степени относительно переменных координат x, y, z произвольной точки плоскости.

Итак, уравнение вида

называется общим уравнением плоскости .

Пример 2. Построить в прямоугольной декартовой системе координат плоскость, заданную уравнением .

Решение. Для построения плоскости необходимо и достаточно знать какие-либо три её точки, не лежащие на одной прямой, например, точки пересечения плоскости с осями координат.

Как найти эти точки? Чтобы найти точку пересечения с осью Oz , нужно в уравнение, данное в условии задачи, вместо икс и игрека подставить нули: x = y = 0 . Поэтому получаем z = 6 . Таким образом, заданная плоскость пересекает ось Oz в точке A (0; 0; 6) .

Точно так же находим точку пересечения плоскости с осью Oy . При x = z = 0 получаем y = −3 , то есть точку B (0; −3; 0) .

И, наконец, находим точку пересечения нашей плоскости с осью Ox . При y = z = 0 получим x = 2 , то есть точку C (2; 0; 0) . По трём полученным в нашем решении точкам A (0; 0; 6) , B (0; −3; 0) и C (2; 0; 0) строим заданную плоскость.

Рассмотрим теперь частные случаи общего уравнения плоскости . Это случаи, когда те или иные коэффициенты уравнения (2) обращаются в нуль.

1. При D = 0 уравнение определяет плоскость, проходящую через начало координат, так как координаты точки 0 (0; 0; 0) удовлетворяют этому уравнению.

2. При A = 0 уравнение определяет плоскость, параллельную оси Ox , поскольку вектор нормали этой плоскости перпендикулярен оси Ox (его проекция на ось Ox равна нулю). Аналогично, при B = 0 плоскость параллельная оси Oy , а при C = 0 плоскость параллельна оси Oz .

3. При A = D = 0 уравнение определяет плоскость, проходящую через ось Ox , поскольку она параллельна оси Ox (A = D = 0). Аналогично, плоскость проходит через ось Oy , а плоскость через ось Oz .

4. При A = B = 0 уравнение определяет плоскость, параллельную координатной плоскости xOy , поскольку она параллельна осям Ox (A = 0) и Oy (B = 0). Аналогично, плоскость параллельна плоскости yOz , а плоскость - плоскости xOz .

5. При A = B = D = 0 уравнение (или z = 0) определяет координатную плоскость xOy , так как она параллельна плоскости xOy (A = B = 0) и проходит через начало координат (D = 0). Аналогично, уравнение y = 0 в пространстве определяет координатную плоскость xOz , а уравнение x = 0 - координатную плоскость yOz .

Пример 3. Составить уравнение плоскости P , проходящей через ось Oy и точку .

Решение. Итак, плоскость проходит через ось Oy . Поэтому в её уравнении y = 0 и это уравнение имеет вид . Для определения коэффициентов A и C воспользуемся тем, что точка принадлежит плоскости P .

Поэтому среди её координат есть такие, которые можно подставить в уравнению плоскости, которое мы уже вывели (). Смотрим ещё раз на координаты точки:

M 0 (2; −4; 3) .

Среди них x = 2 , z = 3 . Подставляем их в уравнение общего вида и получаем уравнение для нашего частного случая:

2A + 3C = 0 .

Оставляем 2A в левой части уравнения, переносим 3C в правую часть и получаем

A = −1,5C .

Подставив найденное значение A в уравнение , получим

или .

Это и есть уравнение, требуемое в условии примера.

Решить задачу на уравнения плоскости самостоятельно, а затем посмотреть решение

Пример 4. Определить плоскость (или плоскости, если больше одной) относительно координатных осей или координатных плоскостей, если плоскость (плоскости) задана уравнением .

Решения типичных задач, которые бывают на контрольных работах - в пособии "Задачи на плоскость: параллельность, перпендикулярность, пересечение трёх плоскостей в одной точке" .

Уравнение плоскости, проходящей через три точки

Как уже упоминалось, необходимым и достаточным условием для построения плоскости, кроме одной точки и вектора нормали, являются также три точки, не лежащие на одной прямой.

Пусть даны три различные точки , и , не лежащие на одной прямой. Так как указанные три точки не лежат на одной прямой, векторы и не коллинеарны, а поэтому любая точка плоскости лежит в одной плоскости с точками , и тогда и только тогда, когда векторы , и компланарны, т.е. тогда и только тогда, когда смешанное произведение этих векторов равно нулю.

Используя выражение смешанного произведения в координатах, получим уравнение плоскости

(3)

После раскрытия определителя это уравнение становится уравнением вида (2), т.е. общим уравнением плоскости.

Пример 5. Составить уравнение плоскости, проходящей через три данные точки, не лежащие на одной прямой:

и определить частный случай общего уравнения прямой, если такой имеет место.

Решение. По формуле (3) имеем:

Нормальное уравнение плоскости. Расстояние от точки до плоскости

Нормальным уравнением плоскости называется её уравнение, записанное в виде

Всякое уравнение первой степени относительно координат x, y, z

Ax + By + Cz +D = 0 (3.1)

задает плоскость, и наоборот: всякая плоскость может быть представлена уравнением (3.1), которое называется уравнением плоскости .

Вектор n (A, B, C), ортогональный плоскости, называется нормальным вектором плоскости. В уравнении (3.1) коэффициенты A, B, C одновременно не равны 0.

Особые случаи уравнения (3.1):

1. D = 0, Ax+By+Cz = 0 - плоскость проходит через начало координат.

2. C = 0, Ax+By+D = 0 - плоскость параллельна оси Oz.

3. C = D = 0, Ax +By = 0 - плоскость проходит через ось Oz.

4. B = C = 0, Ax + D = 0 - плоскость параллельна плоскости Oyz.

Уравнения координатных плоскостей: x = 0, y = 0, z = 0.

Прямая в пространстве может быть задана:

1) как линия пересечения двух плоскостей,т.е. системой уравнений:

A 1 x + B 1 y + C 1 z + D 1 = 0, A 2 x + B 2 y + C 2 z + D 2 = 0; (3.2)

2) двумя своими точками M 1 (x 1 , y 1 , z 1) и M 2 (x 2 , y 2 , z 2), тогда прямая, через них проходящая, задается уравнениями:

= ; (3.3)

3) точкой M 1 (x 1 , y 1 , z 1), ей принадлежащей, и вектором a (m, n, р), ей коллинеарным. Тогда прямая определяется уравнениями:

. (3.4)

Уравнения (3.4) называются каноническими уравнениями прямой .

Вектор a называется направляющим вектором прямой .

Параметрические получим, приравняв каждое из отношений (3.4) параметру t:

x = x 1 +mt, y = y 1 + nt, z = z 1 + рt. (3.5)

Решая систему (3.2) как систему линейных уравнений относительно неизвестных x и y , приходим к уравнениям прямой в проекциях или к приведенным уравнениям прямой :

x = mz + a, y = nz + b. (3.6)

От уравнений (3.6) можно перейти к каноническим уравнениям, находя z из каждого уравнения и приравнивая полученные значения:

.

От общих уравнений (3.2) можно переходить к каноническим и другим способом, если найти какую-либо точку этой прямой и ее направляющий n = [n 1 , n 2 ], где n 1 (A 1 , B 1 , C 1) и n 2 (A 2 , B 2 , C 2) - нормальные векторы заданных плоскостей. Если один из знаменателей m, n или р в уравнениях (3.4) окажется равным нулю, то числитель соответствующей дроби надо положить равным нулю, т.е. система

равносильна системе ; такая прямая перпендикулярна к оси Ох.

Система равносильна системе x = x 1 , y = y 1 ; прямая параллельна оси Oz.

Пример 1.15 . Cоставьте уравнение плоскости, зная, что точка А(1,-1,3) служит основанием перпендикуляра, проведенного из начала координат к этой плоскости.

Решение. По условию задачи вектор ОА (1,-1,3) является нормальным вектором плоскости, тогда ее уравнение можно записать в виде
x-y+3z+D=0. Подставив координаты точки А(1,-1,3), принадлежащей плоскости, найдем D: 1-(-1)+3×3+D = 0 , D = -11. Итак, x-y+3z-11=0.

Пример 1.16 . Составьте уравнение плоскости, проходящей через ось Оz и образующей с плоскостью 2x+y- z-7=0 угол 60 о.

Решение. Плоскость, проходящая через ось Oz, задается уравнением Ax+By=0, где А и В одновременно не обращаются в нуль. Пусть В не
равно 0, A/Bx+y=0. По формуле косинуса угла между двумя плоскостями

.

Решая квадратное уравнение 3m 2 + 8m - 3 = 0, находим его корни
m 1 = 1/3, m 2 = -3, откуда получаем две плоскости 1/3x+y = 0 и -3x+y = 0.

Пример 1.17. Составьте канонические уравнения прямой:
5x + y + z = 0, 2x + 3y - 2z + 5 = 0.

Решение. Канонические уравнения прямой имеют вид:

где m, n, р - координаты направляющего вектора прямой, x 1 , y 1 , z 1 - координаты какой-либо точки, принадлежащей прямой. Прямая задана как линия пересечения двух плоскостей. Чтобы найти точку, принадлежащую прямой, фиксируют одну из координат (проще всего положить, например, x=0) и полученную систему решают как систему линейных уравнений с двумя неизвестными. Итак, пусть x=0, тогда y + z = 0, 3y - 2z+ 5 = 0, откуда y=-1, z=1. Координаты точки М(x 1 , y 1 , z 1), принадлежащей данной прямой, мы нашли: M (0,-1,1). Направляющий вектор прямой легко найти, зная нормальные векторы исходных плоскостей n 1 (5,1,1) и n 2 (2,3,-2). Тогда

Канонические уравнения прямой имеют вид: x/(-5) = (y + 1)/12 =
= (z - 1)/13.

Пример 1.18 . В пучке, определяемом плоскостями 2х-у+5z-3=0 и х+у+2z+1=0, найти две перпендикулярные плоскости, одна из которых проходит через точку М(1,0,1).

Решение. Уравнение пучка, определяемого данными плоскостями, имеет вид u(2х-у+5z-3) + v(х+у+2z+1)=0, где u и v не обращаются в нуль одновременно. Перепишем уравнение пучка следующим образом:

(2u +v)x + (- u + v)y + (5u +2v)z - 3u + v = 0.

Для того, чтобы из пучка выделить плоскость, проходящую через точку М, подставим координаты точки М в уравнение пучка. Получим:

(2u+v)×1 + (-u + v)×0 + (5u + 2v)×1 -3u + v =0, или v = - u.

Тогда уравнение плоскости, содержащей M, найдем, подставив v = - u в уравнение пучка:

u(2x-y +5z - 3) - u (x + y +2z +1) = 0.

Т.к. u¹0 (иначе v=0, а это противоречит определению пучка), то имеем уравнение плоскости x-2y+3z-4=0. Вторая плоскость, принадлежащая пучку, должна быть ей перпендикулярна. Запишем условие ортогональности плоскостей:

(2u+ v)×1 + (v - u)×(-2) + (5u +2v)×3 = 0, или v = - 19/5u.

Значит, уравнение второй плоскости имеет вид:

u(2x -y+5z - 3) - 19/5 u(x + y +2z +1) = 0 или 9x +24y + 13z + 34 = 0.

Рассмотрим прямоугольную систему координат Oxyz в пространстве.

Уравнением поверхности называется такое уравнение F(x,y,z)=0, которому удовлетворяют координаты каждой точки, лежащей на поверхности, и не удовлетворяют координаты точек, не лежащих на поверхности.

Например, сфера – это геометрическое место точек, равноудаленных от некоторой точки, называемой центром сферы. Так все точки, удовлетворяющие уравнению
лежат на сфере с центром в точке О(0.0.0) и радиусомR (Рис.1).

Координаты любой точки, не лежащей на данной сфере, не удовлетворяют этому уравнению.

Линию в пространстве можно рассматривать как линию пересечения двух поверхностей. Так на рисунке 1 пересечением сферы с плоскостью Oxy является окружность с центром в точке О и радиусом R.

Простейшей поверхностью является плоскость , простейшей линией в пространстве является прямая .

2. Плоскость в пространстве.

2.1. Уравнение плоскости по точке и нормальному вектору.

В системе координат Oxyz рассмотрим плоскость (Рис.2). Ее положение определяется заданием вектораперпендикулярного этой плоскости, и фиксированной точки
лежащей в этой плоскости. Вектор
перпендикулярный плоскости
называетсянормальным вектором (вектором-нормалью). Рассмотрим произвольную точку M(x,y,z) плоскости . Вектор
лежащий в плоскости
будет перпендикулярен вектору-нормалиИспользуя условие ортогональности векторов
получим уравнение:где

Уравнение (2.2.1 )

называется уравнением плоскости по точке и нормальному вектору.

Если в уравнении (2.1.1) раскроем скобки и перегруппируем члены, то получим уравнение илиAx + By + Cz + D = 0, где

D =
.

2.2. Общее уравнение плоскости.

Уравнение Ax + By + Cz +D = 0 (2.2.1 )

называется общим уравнением плоскости, где
- нормальный вектор.

Рассмотрим частные случаи этого уравнения.

1).D = 0. Уравнение имеет вид: Ax + By + Cz = 0. Такая плоскость проходит через начало координат. Ее нормальный вектор

2). С = 0:Ax + By + D = 0
плоскость параллельна оси oz (Рис.3).

3). B = 0: Ax + Cz + D = 0
плоскость параллельна оси oy (Рис.4).

4). A = 0: By + Cz + D = 0

плоскость параллельна оси ox (Рис.5).

5). C = D = 0: Ax + By = 0
плоскость проходит через ось oz (Рис.6).

6).B = D = 0: Ax + Cz = 0
плоскость проходит через ось oy (Рис.7).

7). A = D = 0: By + Cz = 0
плоскость проходит через ось ox (Рис.8).

8).A = B = 0: Cz + D = 0

||oz
плоскость параллельна плоскостиOxy (Рис.9).

9). B = C = 0: Ax + D = 0

||ox
плоскость

параллельна плоскостиOyz (Рис.10).

10).A = C = 0: By + D = 0

||oy
плоскость параллельна плоскостиOxz (Рис.11).

Пример 1. Составить уравнение плоскости, проходящей через точку
перпендикулярно вектору
Найти точки пересечения этой плоскости с осями координат.

Решение. По формуле (2.1.1) имеем

2x – y + 3z + 3 = 0.

Для того, чтобы найти пересечение этой плоскости с осью ox, подставим в полученное уравнение y = 0, z = 0. Имеем 2x + 3 = 0; x = – 1,5.

Точка пересечения искомой плоскости с осью ox имеет координаты:

Найдем пересечение плоскости с осью oy. Для этого возьмем x = 0; z = 0. Имеем

– y + 3 = 0 y = 3. Итак,

Для нахождения точки пересечения с осью oz возьмем x = 0; y = 0
3z + 3 = 0
z = – 1. Итак,

Ответ: 2x – y + 3z + 3 = 0,
,
,
.

Пример 2. Исследовать плоскости, заданные уравнениями:

a). 3x – y + 2z = 0

б). 2x + z – 1 = 0

в). – y + 5 = 0

Решение. а). Данная плоскость проходит через начало координат (D = 0) и имеет нормальный вектор

б). В уравнении
коэффициентB = 0. Следовательно,
Плоскость параллельна осиoy.

в). В уравнении – y + 5 = 0 коэффициенты A = 0, C = 0. Значит

Плоскость параллельна плоскости oxz.

г). Уравнение x = 0 задает плоскость oyz, так как при B = 0, C = 0 плоскость параллельна плоскости oyz, а из условия D = 0 следует, что плоскость проходит через начало координат.

Пример 3. Составить уравнение плоскости, проходящей через точку A(2,3,1) и перпендикулярной вектору
гдеB(1,0, –1), C(–2,2,0).

Решение. Найдем вектор

Вектор
является нормальным вектором искомой плоскости, проходящей через точкуA(2,3,1). По формуле (2.1.1) имеем:

– 3x + 2y + z + 6 – 6 – 1 = 0
– 3x + 2y + z – 1 = 0 3x – 2y – z + 1 = 0.

Ответ: 3x – 2y – z + 1 = 0.

2.3. Уравнение плоскости, проходящей через три точки.

Три точки, не лежащие на одной прямой, определяют единственную плоскость (см. рис. 12). Пусть точки не лежат на одной прямой. Чтобы составить уравнение плоскости, нужно знать одну точку плоскости и нормальный вектор. Точки, лежащие на плоскости, известны:
Можно взять любую. Для нахождения нормального вектора воспользуемся определением векторного произведения векторов. Пусть
Тогдаследовательно,
Зная координаты точки
и нормального векторанайдем уравнение плоскости, применяя формулу (2.1.1).

Другим способом уравнение плоскости, проходящей через три заданные точки, можно получить, используя условие компланарности трех векторов. Действительно, векторы
где M(x,y,z) – произвольная точка искомой плоскости, компланарны (см. рис.13). Следовательно, их смешанное произведение равно 0:

Применив формулу смешанного произведения в координатной форме, получим:

(2.3.1)

Пример 1. Составить уравнение плоскости, проходящей через точки

Решение. По формуле (2.3.1) имеем

Раскрыв определитель, получим:

Полученная плоскость параллельна оси oy. Ее нормальный вектор

Ответ : x + z – 4 = 0.

2.4. Угол между двумя прямыми.

Две плоскости, пересекаясь, образуют четыре двугранных угла, равных попарно (см. рис. 14). Один из двугранных углов равен углу между нормальными векторами этих плоскостей.

Пусть даны плоскости:

Их нормальные векторы имеют координаты:

Из векторной алгебры известно, что
или

(2.4.1)

Пример: Найти угол между плоскостями:

Решение: Найдем координаты нормальных векторов: По формуле (2.4.1) имеем:


Один из двугранных углов, полученных при пересечении данных плоскостей, равен
Можно найти и второй угол:

Ответ :

2.5. Условие параллельности двух плоскостей.

Пусть даны две плоскости:

и

Если эти плоскости параллельны, то их нормальные векторы

коллинеарны (см. рис.15).

Если векторы коллинеарны, то их соответствующие координаты пропорциональны:

(2.5.1 )

Верно и обратное утверждение: если нормальные векторы плоскостей коллинеарны, то плоскости параллельны.

Пример 1. Какие из указанных плоскостей параллельны:

Решение: а). Выпишем координаты нормальных векторов.

Проверим их коллинеарность:

Отсюда следует, что

б). Выпишем координаты

Проверим коллинеарность:

Векторы
не коллинеарны, плоскости
не параллельны.

Пример 2. Составить уравнение плоскости, проходящей через точку

M(2, 3, –2) параллельно плоскости

Решение: Искомая плоскость параллельна данной плоскости. Поэтому нормальный вектор плоскости можно взять за нормальный вектор искомой плоскости.
Применяя уравнение (2.1.1), получим:

Ответ:
.

Пример 3. Определить при каких a и b плоскости параллельны:

Решение: Выпишем координаты нормальных векторов:

Так как плоскости параллельны, то векторы
коллинеарны.По условию (2.5.1)
Отсюда b = – 2 ; a = 3.

Ответ: a = 3; b = –2.

2.6. Условие перпендикулярности двух плоскостей.

Если плоскости
перпендикулярны, то их нормальные векторы
тоже перпендикулярны (см. рис.16).. Отсюда следует, что их скалярное произведение равно нулю, т.е.
или в координатах:


Это условие перпендикулярности двух плоскостей. Обратное утверждение также верно, то есть, если выполняется условие (2.6.1), то векторы
следовательно,

Пример 1. Какие из указанных плоскостей перпендикулярны:

Решение: а). Запишем координаты нормальных векторов:

Проверим их ортогональность:

Отсюда следует, что

б). Запишем координаты нормальных векторов:

то есть плоскости
неперпендикулярны.

Пример 2. При каком значении m плоскости перпендикулярны

Решение: Запишем координаты нормальных векторов:

Найдем их скалярное произведение:

Так как плоскости перпендикулярны, то
Следовательно, 4 – 2m = 0;

Ответ: m = 2.

2.7. Расстояние от точки до плоскости.

Пусть дана точка
и плоскость

Расстояние от точки (см. рис.17) находим по формуле:

(2.7.1 )

Пример: Найти расстояние от точки M(3, 9, 1) до плоскости

Решение: Применяем формулу (2.7.1), где A = 1, B = – 2, C = 2, D = –3,

Ответ: