Наибольшее и наименьшее значение функции 2 переменных. Определение наибольшего и наименьшего значений функции двух переменных в замкнутой области. Экстремумы функций нескольких переменных

Экстремум функции – это свойство местного, локального характера (см. определение). Не следует смешивать максимум (минимум) с наибольшим (наименьшим) значением функции в замкнутой области D .

Определение. Допустим, функция z = f (x, y ) определена и непрерывна в некоторой области D , имеет в этой области конечные частные производные. Тогда в этой области найдутся точки, в которых функция достигает наибольшего и наименьшего значения остальных значений. Эти точки могут лежать внутри области или на ее границе.

Для того чтобы найти наибольшее и наименьшее значения функции в замкнутой области, нужно:

1) Найти стационарные точки, расположенные внутри области, и вычислить значения функции в этих точках.

Замечание. Присоединить к стационарным точкам точки, в которых производные бесконечны или не существуют (если такие имеются).

2) Найти стационарные точки на границе области и вычислить значения функции в этих точках.

3) Найти значения функции в угловых точках – точках пересечения граничных линий.

4) Из всех найденных значений выбрать наибольшее и наименьшее.

Пример 1.22. Найти наибольшее и наименьшее значение функции

z = 2x 2 – xy + + y 2 + 7x в замкнутой области D : –3 x 3, –3 y 3 (рис. 1.3).

Рис. 1.3. Область исследования D

Решение. 1) Находим стационарные точки

Отсюда у = –1, х = –2, стационарная точка М 0 (–2, –1) D , z (М 0) = –7.

2) Исследуем функцию на границе области, которая состоит из отрезков AB, DC, CB, AD .

а) На прямой AB : у = 3, а функция имеет вид

z = 2x 2 + 3x + 9 + 7x =

= 2x 2 + 10x + 9, x [–3, 3].

Эта функция одной независимой переменной.


Определим стационарные точки данной функции:

следовательно, х = –2,5.

Определяем z при х = –2,5, а также на концах отрезка [-3, 3]:

z (–2,5; –3) = –3,5; z (3, –3) = –3; z (3, –3) = 57,

значит = 3,5, а = 57.

б) Рассмотрим отрезок ВС : х = 3.

z = у 2 3у + 39; у [–3, 3],

= 2у – 3; 2у – 3 = 0 у = 3/2.

Находим z (3, 3/2) = , z (3, 3) = 15, z (3, 3) = 39.

в) На отрезке CD : у = 3, z = 2x 2 + 4x + 9; у [–3, 3],

= –4x + 4 = 0 Þ x = –1; z (–1, 3) = 7, z (3, 3) = 15, z (3, 3) = 39;

Пусть функция $z=f(x,y)$ определена и непрерывна в некоторой ограниченной замкнутой области $D$. Пусть в этой области заданная функция имеет конечные частные производные первого порядка (за исключением, быть может, конечного количества точек). Чтобы найти наибольшее и наименьшее значения функции двух переменных в данной замкнутой области требуется выполнить три шага простого алгоритма.

Алгоритм поиска наибольшего и наименьшего значений функции $z=f(x,y)$ в замкнутой области $D$.
  • Найти критические точки функции $z=f(x,y)$, принадлежащие области $D$. Вычислить значения функции в критических точках.
  • Исследовать поведение функции $z=f(x,y)$ на границе области $D$, найдя точки возможного наибольшего и наименьшего значений. Вычислить значения функции в полученных точках.
  • Из значений функции, полученных в предыдущих двух пунктах, выбрать наибольшее и наименьшее.
  • Что такое критические точки? показать\скрыть

    Под критическими точками подразумевают такие точки, в которых обе частные производные первого порядка равны нулю (т.е. $\frac{\partial z}{\partial x}=0$ и $\frac{\partial z}{\partial y}=0$) или хотя бы одна частная производная не существует.

    Часто точки, в которых частные производные первого порядка равны нулю, именуют стационарными точками . Таким образом, стационарные точки - есть подмножество критических точек.

    Пример №1

    Найти наибольшее и наименьшее значения функции $z=x^2+2xy-y^2-4x$ в замкнутой области, ограниченной линиями $x=3$, $y=0$ и $y=x+1$.

    Будем следовать указанному выше , но для начала разберёмся с чертежом заданной области, которую обозначим буквой $D$. Нам заданы уравнения трёх прямых, кои эту область ограничивают. Прямая $x=3$ проходит через точку $(3;0)$ параллельно оси ординат (оси Oy). Прямая $y=0$ - это уравнение оси абсцисс (оси Ox). Ну, а для построения прямой $y=x+1$ найдём две точки, через которые и проведём данную прямую. Можно, конечно, подставить вместо $x$ парочку произвольных значений. Например, подставляя $x=10$, получим: $y=x+1=10+1=11$. Мы нашли точку $(10;11)$, лежащую на прямой $y=x+1$. Однако лучше отыщем те точки, в которых прямая $y=x+1$ пересекается с линиями $x=3$ и $y=0$. Почему это лучше? Потому, что мы одним выстрелом уложим пару зайцев: получим две точки для построения прямой $y=x+1$ и заодно выясним, в каких точках эта прямая пересекает иные линии, ограничивающие заданную область. Прямая $y=x+1$ пересекает прямую $x=3$ в точке $(3;4)$, а прямую $y=0$ - в точке $(-1;0)$. Дабы не загромождать ход решения вспомогательными пояснениями, то вопрос о получении этих двух точек вынесу в примечание.

    Как были получены точки $(3;4)$ и $(-1;0)$? показать\скрыть

    Начнём с точки пересечения прямых $y=x+1$ и $x=3$. Координаты искомой точки принадлежат и первой, и второй прямой, поэтому для нахождения неизвестных координат нужно решить систему уравнений:

    $$ \left \{ \begin{aligned} & y=x+1;\\ & x=3. \end{aligned} \right. $$

    Решение такой системы тривиально: подставляя $x=3$ в первое уравнение будем иметь: $y=3+1=4$. Точка $(3;4)$ и есть искомая точка пересечения прямых $y=x+1$ и $x=3$.

    Теперь отыщем точку пересечения прямых $y=x+1$ и $y=0$. Вновь составим и решим систему уравнений:

    $$ \left \{ \begin{aligned} & y=x+1;\\ & y=0. \end{aligned} \right. $$

    Подставляя $y=0$ в первое уравнение, получим: $0=x+1$, $x=-1$. Точка $(-1;0)$ и есть искомая точка пересечения прямых $y=x+1$ и $y=0$ (оси абсцисс).

    Всё готово для построения чертежа, который будет иметь такой вид:

    Вопрос примечания кажется очевидным, ведь всё видно по рисунку. Однако стоит помнить, что рисунок не может служить доказательством. Рисунок - лишь иллюстрация для наглядности.

    Наша область была задана с помощью уравнений прямых, которые её ограничивают. Очевидно, что эти прямые определяют треугольник, не так ли? Или не совсем очевидно? А может, нам задана иная область, ограниченная теми же прямыми:

    Конечно, в условии сказано, что область замкнута, поэтому показанный рисунок неверен. Но чтобы избегать подобных двусмысленностей, области лучше задавать неравенствами. Нас интересует часть плоскости, расположенная под прямой $y=x+1$? Ок, значит, $y ≤ x+1$. Наша область должна располагаться над прямой $y=0$? Отлично, значит $y ≥ 0$. Кстати, два последних неравенства легко объединяются в одно: $0 ≤ y ≤ x+1$.

    $$ \left \{ \begin{aligned} & 0 ≤ y ≤ x+1;\\ & x ≤ 3. \end{aligned} \right. $$

    Эти неравенства и задают область $D$, причём задают её однозначно, не допуская никаких двусмысленностей. Но как это поможет нам в том вопросе, что указан в начале примечания? Ещё как поможет:) Нам нужно проверить, принадлежит ли точка $M_1(1;1)$ области $D$. Подставим $x=1$ и $y=1$ в систему неравенств, которые эту область определяют. Если оба неравенства будут выполнены, то точка лежит внутри области. Если хотя бы одно из неравенств будет не выполнено, то точка области не принадлежит. Итак:

    $$ \left \{ \begin{aligned} & 0 ≤ 1 ≤ 1+1;\\ & 1 ≤ 3. \end{aligned} \right. \;\; \left \{ \begin{aligned} & 0 ≤ 1 ≤ 2;\\ & 1 ≤ 3. \end{aligned} \right. $$

    Оба неравенства справедливы. Точка $M_1(1;1)$ приналежит области $D$.

    Теперь настал черёд исследовать поведение функции на границе области, т.е. переходим ко . Начнём с прямой $y=0$.

    Прямая $y=0$ (ось абсцисс) ограничивает область $D$ при условии $-1 ≤ x ≤ 3$. Подставим $y=0$ в заданную функцию $z(x,y)=x^2+2xy-y^2-4x$. Полученную в результате подстановки функцию одной переменной $x$ обозначим как $f_1(x)$:

    $$ f_1(x)=z(x,0)=x^2+2x\cdot 0-0^2-4x=x^2-4x. $$

    Теперь для функции $f_1(x)$ нужно найти наибольшее и наименьшее значения на отрезке $-1 ≤ x ≤ 3$. Отыщем производную этой функции и приравняем её к нулю:

    $$ f_{1}^{"}(x)=2x-4;\\ 2x-4=0; \; x=2. $$

    Значение $x=2$ принадлежит отрезку $-1 ≤ x ≤ 3$, поэтому к списку точек добавим ещё и $M_2(2;0)$. Кроме того, вычислим значения функции $z$ на концах отрезка $-1 ≤ x ≤ 3$, т.е. в точках $M_3(-1;0)$ и $M_4(3;0)$. Кстати, если бы точка $M_2$ не принадлежала рассматриваемому отрезку, то, разумеется, значение функции $z$ в ней вычислять не было бы надобности.

    Итак, вычислим значения функции $z$ в точках $M_2$, $M_3$, $M_4$. Можно, конечно, подставлять координаты данных точек в исходное выражение $z=x^2+2xy-y^2-4x$. Например, для точки $M_2$ получим:

    $$z_2=z(M_2)=2^2+2\cdot 2\cdot 0-0^2-4\cdot 2=-4.$$

    Однако вычисления можно немного упростить. Для этого стоит вспомнить, что на отрезке $M_3M_4$ имеем $z(x,y)=f_1(x)$. Распишу это подробно:

    \begin{aligned} & z_2=z(M_2)=z(2,0)=f_1(2)=2^2-4\cdot 2=-4;\\ & z_3=z(M_3)=z(-1,0)=f_1(-1)=(-1)^2-4\cdot (-1)=5;\\ & z_4=z(M_4)=z(3,0)=f_1(3)=3^2-4\cdot 3=-3. \end{aligned}

    Разумеется, что в столь подробных записях обычно нет нужды, и все вычисления в дальнейшем станем записывать покороче:

    $$z_2=f_1(2)=2^2-4\cdot 2=-4;\; z_3=f_1(-1)=(-1)^2-4\cdot (-1)=5;\; z_4=f_1(3)=3^2-4\cdot 3=-3.$$

    Теперь обратимся к прямой $x=3$. Эта прямая ограничивает область $D$ при условии $0 ≤ y ≤ 4$. Подставим $x=3$ в заданную функцию $z$. В результате такой подстановки мы получим функцию $f_2(y)$:

    $$ f_2(y)=z(3,y)=3^2+2\cdot 3\cdot y-y^2-4\cdot 3=-y^2+6y-3. $$

    Для функции $f_2(y)$ нужно найти наибольшее и наименьшее значения на отрезке $0 ≤ y ≤ 4$. Отыщем производную этой функции и приравняем её к нулю:

    $$ f_{2}^{"}(y)=-2y+6;\\ -2y+6=0; \; y=3. $$

    Значение $y=3$ принадлежит отрезку $0 ≤ y ≤ 4$, поэтому к найденным ранее точкам добавим ещё и $M_5(3;3)$. Кроме того, нужно вычислить значение функции $z$ в точках на концах отрезка $0 ≤ y ≤ 4$, т.е. в точках $M_4(3;0)$ и $M_6(3;4)$. В точке $M_4(3;0)$ мы уже вычисляли значение $z$. Вычислим значение функции $z$ в точках $M_5$ и $M_6$. Напомню, что на отрезке $M_4M_6$ имеем $z(x,y)=f_2(y)$, поэтому:

    \begin{aligned} & z_5=f_2(3)=-3^2+6\cdot 3-3=6; & z_6=f_2(4)=-4^2+6\cdot 4-3=5. \end{aligned}

    И, наконец, рассмотрим последнюю границу области $D$, т.е. прямую $y=x+1$. Эта прямая ограничивает область $D$ при условии $-1 ≤ x ≤ 3$. Подставляя $y=x+1$ в функцию $z$, будем иметь:

    $$ f_3(x)=z(x,x+1)=x^2+2x\cdot (x+1)-(x+1)^2-4x=2x^2-4x-1. $$

    Вновь мы получили функцию одной переменной $x$. И вновь нужно найти наибольшее и наименьшее значения этой функции на отрезке $-1 ≤ x ≤ 3$. Отыщем производную функции $f_{3}(x)$ и приравняем её к нулю:

    $$ f_{3}^{"}(x)=4x-4;\\ 4x-4=0; \; x=1. $$

    Значение $x=1$ принадлежит отрезку $-1 ≤ x ≤ 3$. Если $x=1$, то $y=x+1=2$. Добавим к списку точек ещё и $M_7(1;2)$ и выясним, чему равно значение функции $z$ в этой точке. Точки на концах отрезка $-1 ≤ x ≤ 3$, т.е. точки $M_3(-1;0)$ и $M_6(3;4)$, были рассмотрены ранее, значение функции в них мы уже находили.

    $$z_7=f_3(1)=2\cdot 1^2-4\cdot 1-1=-3.$$

    Второй шаг решения закончен. Мы получили семь значений:

    $$z_1=-2;\;z_2=-4;\;z_3=5;\;z_4=-3;\;z_5=6;\;z_6=5;\;z_7=-3.$$

    Обратимся к . Выбирая наибольшее и наименьшее значения из тех чисел, что были получены в третьем пункте, будем иметь:

    $$z_{min}=-4; \; z_{max}=6.$$

    Задача решена, осталось лишь записать ответ.

    Ответ : $z_{min}=-4; \; z_{max}=6$.

    Пример №2

    Найти наибольшее и наименьшее значения функции $z=x^2+y^2-12x+16y$ в области $x^2+y^2 ≤ 25$.

    Сначала построим чертёж. Уравнение $x^2+y^2=25$ (это граничная линия заданной области) определяет окружность с центром в начале координат (т.е. в точке $(0;0)$) и радиусом 5. Неравенству $x^2+y^2 ≤ 25$ удовлетворяют все точки внутри и на упомянутой окружности.

    Будем действовать по . Найдем частные производные и выясним критические точки.

    $$ \frac{\partial z}{\partial x}=2x-12; \frac{\partial z}{\partial y}=2y+16. $$

    Точек, в которых найденные частные производные не существуют, нет. Выясним, в каких точках обе частные производные одновременно равны нулю, т.е. найдём стационарные точки.

    $$ \left \{ \begin{aligned} & 2x-12=0;\\ & 2y+16=0. \end{aligned} \right. \;\; \left \{ \begin{aligned} & x=6;\\ & y=-8. \end{aligned} \right. $$

    Мы получили стационарную точку $(6;-8)$. Однако найденная точка не принадлежит области $D$. Это легко показать, даже не прибегая к помощи рисунка. Проверим, выполняется ли неравенство $x^2+y^2 ≤ 25$, которое определяет нашу область $D$. Если $x=6$, $y=-8$, то $x^2+y^2=36+64=100$, т.е. неравенство $x^2+y^2 ≤ 25$ не выполнено. Вывод: точка $(6;-8)$ не принадлежит области $D$.

    Итак, внутри области $D$ нет критических точек. Переходим дальше, ко . Нам нужно исследовать поведение функции на границе заданной области, т.е. на окружности $x^2+y^2=25$. Можно, конечно, выразить $y$ через $x$, а потом подставить полученное выражение в нашу функцию $z$. Из уравнения окружности получим: $y=\sqrt{25-x^2}$ или $y=-\sqrt{25-x^2}$. Подставляя, например, $y=\sqrt{25-x^2}$ в заданную функцию, будем иметь:

    $$ z=x^2+y^2-12x+16y=x^2+25-x^2-12x+16\sqrt{25-x^2}=25-12x+16\sqrt{25-x^2}; \;\; -5≤ x ≤ 5. $$

    Дальнейшее решение будет полностью идентично исследованию поведения функции на границе области в предыдущем примере №1. Однако мне кажется более разумным в этой ситуации применить метод Лагранжа . Нас будет интересовать лишь первая часть этого метода. После применения первой части метода Лагранжа мы получим точки, в которых и исследуем функцию $z$ на предмет минимального и максимального значений.

    Составляем функцию Лагранжа:

    $$ F=z(x,y)+\lambda\cdot(x^2+y^2-25)=x^2+y^2-12x+16y+\lambda\cdot (x^2+y^2-25). $$

    Находим частные производные функции Лагранжа и составляем соответствующую систему уравнений:

    $$ F_{x}^{"}=2x-12+2\lambda x; \;\; F_{y}^{"}=2y+16+2\lambda y.\\ \left \{ \begin{aligned} & 2x-12+2\lambda x=0;\\ & 2y+16+2\lambda y=0;\\ & x^2+y^2-25=0. \end{aligned} \right. \;\; \left \{ \begin{aligned} & x+\lambda x=6;\\ & y+\lambda y=-8;\\ & x^2+y^2=25. \end{aligned} \right. $$

    Для решения этой системы давайте сразу укажем, что $\lambda\neq -1$. Почему $\lambda\neq -1$? Попробуем подставить $\lambda=-1$ в первое уравнение:

    $$ x+(-1)\cdot x=6; \; x-x=6; \; 0=6. $$

    Полученное противоречие $0=6$ говорит о том, что значение $\lambda=-1$ недопустимо. Вывод: $\lambda\neq -1$. Выразим $x$ и $y$ через $\lambda$:

    \begin{aligned} & x+\lambda x=6;\; x(1+\lambda)=6;\; x=\frac{6}{1+\lambda}. \\ & y+\lambda y=-8;\; y(1+\lambda)=-8;\; y=\frac{-8}{1+\lambda}. \end{aligned}

    Полагаю, что тут становится очевидным, зачем мы специально оговаривали условие $\lambda\neq -1$. Это было сделано, чтобы без помех поместить выражение $1+\lambda$ в знаменатели. Т.е., чтобы быть уверенным, что знаменатель $1+\lambda\neq 0$.

    Подставим полученные выражения для $x$ и $y$ в третье уравнение системы, т.е. в $x^2+y^2=25$:

    $$ \left(\frac{6}{1+\lambda} \right)^2+\left(\frac{-8}{1+\lambda} \right)^2=25;\\ \frac{36}{(1+\lambda)^2}+\frac{64}{(1+\lambda)^2}=25;\\ \frac{100}{(1+\lambda)^2}=25; \; (1+\lambda)^2=4. $$

    Из полученного равенства следует, что $1+\lambda=2$ или $1+\lambda=-2$. Отсюда имеем два значения параметра $\lambda$, а именно: $\lambda_1=1$, $\lambda_2=-3$. Соответственно, получим и две пары значений $x$ и $y$:

    \begin{aligned} & x_1=\frac{6}{1+\lambda_1}=\frac{6}{2}=3; \; y_1=\frac{-8}{1+\lambda_1}=\frac{-8}{2}=-4. \\ & x_2=\frac{6}{1+\lambda_2}=\frac{6}{-2}=-3; \; y_2=\frac{-8}{1+\lambda_2}=\frac{-8}{-2}=4. \end{aligned}

    Итак, мы получили две точки возможного условного экстремума, т.е. $M_1(3;-4)$ и $M_2(-3;4)$. Найдём значения функции $z$ в точках $M_1$ и $M_2$:

    \begin{aligned} & z_1=z(M_1)=3^2+(-4)^2-12\cdot 3+16\cdot (-4)=-75; \\ & z_2=z(M_2)=(-3)^2+4^2-12\cdot(-3)+16\cdot 4=125. \end{aligned}

    На следует выбрать наибольшее и наименьшее значения из тех, что мы получили на первом и втором шагах. Но в данном случае выбор невелик:) Имеем:

    $$ z_{min}=-75; \; z_{max}=125. $$

    Ответ : $z_{min}=-75; \; z_{max}=125$.

    Определение 1.11 Пусть задана функция двух переменных z=z(x,y), (x,y) D . ТочкаM 0 (x 0 ;y 0 ) - внутренняя точка областиD .

    Если в D присутствует такая окрестностьUM 0 точкиM 0 , что для всех точек

    то точка M 0 называется точкой локального максимума. А само значениеz(M 0 ) - локальным максимумом.

    А если же для всех точек

    то точка M 0 называется точкой локального минимума функцииz(x,y) . А само значениеz(M 0 ) - локальным минимумом.

    Локальный максимум и локальный минимум называются локальными экстремумами функции z(x,y) . На рис. 1.4 поясняется геометрический смысл локального максимума:M 0 - точка максимума, так как на поверхностиz =z (x,y) соответствующая ей точкаC 0 находится выше любой соседней точкиC (в этом локальность максимума).

    Заметим, что на поверхности в целом есть точки (например, В ), которые находятся вышеC 0 , но эти точки (например,В ) не являются "соседними" с точкойC 0 .

    В частности, точке В соответствует понятие глобального максимума:

    Аналогично определяется и глобальный минимум:

    Нахождение глобальных максимумов и минимумов будет рассмотрено в п.1.10.

    Теорема 1.3 (необходимые условия экстремума).

    Пусть задана функция z =z (x,y), (x,y) D . ТочкаM 0 (x 0 ;y 0 D - точка локального экстремума.

    Если в этой точке существуют z" x иz" y , то

    Геометрическое доказательство "очевидно". Если в точке C 0 на (рис.1.4) провести касательную плоскость, то она "естественно" пройдет горизонтально, т. е. под угломк осиОх и к осиОу .

    Тогда в соответствии с геометрическим смыслом частных производных (рис.1.3):

    что и требовалось доказать.

    Определение 1.12.

    Если в точке M 0 выполняются условия (1.41), то она называется стационарной точкой функцииz (x,y) .

    Теорема 1.4 (достаточные условия экстремума).

    Пусть задана z =z (x,y), (x,y) D , которая имеет частные производные второго порядка в некоторой окрестности точкиM 0 (x 0 ,y 0 ) D . ПричемM 0 - стационарная точка (т. е. необходимые условия (1.41) выполнены). Вычислим:

    Доказательство теоремы использует темы (формула Тейлора функции нескольких переменных и теория квадратичных форм), которые в этом пособии не рассматриваются.

    Пример 1.13.

    Исследовать на экстремум:

    1. Найдём стационарные точки, решая систему (1.41):

    то есть найдены четыре стационарные точки. 2.

    по теореме 1.4 в точке – минимум. Причём

    по теореме 1.4 в точке

    Максимум. Причём

    §10 Наибольшее и наименьшее значения функции двух переменных в замкнутой области

    Теорема 1.5 Пусть в замкнутой области D задана функция z=z(x,y) , имеющая непрерывные частные производные первого порядка. ГраницаГ областиD является кусочно гладкой (т. е. состоит из кусков "гладких на ощупь" кривых или прямых). Тогда в областиD функцияz(x,y) достигает своего наибольшегоM и наименьшегоm значений.

    Без доказательства.

    Можно предложить следующий план нахожденияM иm . 1. Строим чертёж, выделяем все части границы областиD и находим все "угловые" точки границы. 2. Находим стационарные точки внутриD . 3. Находим стационарные точки на каждой из границ. 4. Вычисляем во всех стационарных и угловых точках, а затем выбираем наибольшееM и наименьшееm значения.

    Пример 1.14 Найти наибольшее M и наименьшееm значения функцииz = 4x2-2xy+y2-8x в замкнутой областиD , ограниченной:x = 0, y = 0, 4x+3y=12 .

    1. Построим область D (рис. 1.5) на плоскостиОху .

    Угловые точки: О (0; 0), В (0; 4), А (3; 0) .

    Граница Г областиD состоит из трёх частей:

    2. Найдём стационарные точки внутри области D :

    3. Стационарные точки на границах l 1 , l 2 , l 3 :

    4. Вычисляем шесть значений:

    Из полученных шести значений выбираем наибольшее и наименьшее.

    В июле 2020 года NASA запускает экспедицию на Марс. Космический аппарат доставит на Марс электронный носитель с именами всех зарегистрированных участников экспедиции.

    Регистрация участников открыта. Получите свой билет на Марс по этой ссылке .


    Если этот пост решил вашу проблему или просто понравился вам, поделитесь ссылкой на него со своими друзьями в социальных сетях.

    Один из этих вариантов кода нужно скопировать и вставить в код вашей веб-станицы, желательно между тегами и или же сразу после тега . По первому варианту MathJax подгружается быстрее и меньше тормозит страницу. Зато второй вариант автоматически отслеживает и подгружает свежие версии MathJax. Если вставить первый код, то его нужно будет периодически обновлять. Если вставить второй код, то страницы будут загружаться медленнее, зато вам не нужно будет постоянно следить за обновлениями MathJax.

    Подключить MathJax проще всего в Blogger или WordPress: в панели управления сайтом добавьте виджет, предназначенный для вставки стороннего кода JavaScript, скопируйте в него первый или второй вариант кода загрузки, представленного выше, и разместите виджет поближе к началу шаблона (кстати, это вовсе не обязательно, поскольку скрипт MathJax загружается асинхронно). Вот и все. Теперь изучите синтаксис разметки MathML, LaTeX и ASCIIMathML, и вы готовы вставлять математические формулы на веб-страницы своего сайта.

    Очередной канун Нового Года... морозная погода и снежинки на оконном стекле... Все это побудило меня вновь написать о... фракталах, и о том, что знает об этом Вольфрам Альфа. По этому поводу есть интересная статья , в которой имеются примеры двумерных фрактальных структур. Здесь же мы рассмотрим более сложные примеры трехмерных фракталов.

    Фрактал можно наглядно представить (описать), как геометрическую фигуру или тело (имея ввиду, что и то и другое есть множество, в данном случае, множество точек), детали которой имеют такую же форму, как и сама исходная фигура. То есть, это самоподобная структура, рассматривая детали которой при увеличении, мы будем видеть ту же самую форму, что и без увеличения. Тогда как в случае обычной геометрической фигуры (не фрактала), при увеличении мы увидим детали, которые имеют более простую форму, чем сама исходная фигура. Например, при достаточно большом увеличении часть эллипса выглядит, как отрезок прямой. С фракталами такого не происходит: при любом их увеличении мы снова увидим ту же самую сложную форму, которая с каждым увеличением будет повторяться снова и снова.

    Бенуа Мандельброт (Benoit Mandelbrot), основоположник науки о фракталах, в своей статье Фракталы и искусство во имя науки написал: "Фракталы - это геометрические формы, которые в равной степени сложны в своих деталях, как и в своей общей форме. То есть, если часть фрактала будет увеличена до размера целого, она будет выглядеть, как целое, или в точности, или, возможно, с небольшой деформацией".