Найти расстояние от точки до плоскости онлайн. Задачи c2 единого государственного экзамена по математике на нахождение расстояния от точки до плоскости. I. Организационный момент

ЗАДАЧИ C2 ЕДИНОГО ГОСУДАРСТВЕННОГО ЭКЗАМЕНА ПО МАТЕМАТИКЕ НА НАХОЖДЕНИЕ РАССТОЯНИЯ ОТ ТОЧКИ ДО ПЛОСКОСТИ

Куликова Анастасия Юрьевна

студент 5 курса, кафедра мат. анализа, алгебры и геометрии ЕИ КФУ, РФ, Республика Татарстан, г. Елабуга

Ганеева Айгуль Рифовна

научный руководитель, канд. пед. наук, доцент ЕИ КФУ, РФ, Республика Татарстан, г. Елабуга

В заданиях ЕГЭ по математике в последние годы появляются задачи на вычисление расстояния от точки до плоскости. В данной статье на примере одной задачи рассмотрены различные методы нахождения расстояния от точки до плоскости. Для решения различных задач можно использовать наиболее подходящий метод. Решив задачу одним методом, другим методом можно проверить правильность полученного результата.

Определение. Расстояние от точки до плоскости, не содержащей эту точку, есть длина отрезка перпендикуляра, опущенного из этой точки на данную плоскость.

Задача. Дан прямоугольный параллелепипед А B С DA 1 B 1 C 1 D 1 со сторонами AB =2, BC =4, AA 1 =6. Найдите расстояние от точки D до плоскости АС D 1 .

1 способ . Используя определение . Найти расстояние r(D , АС D 1) от точки D до плоскости АС D 1 (рис. 1).

Рисунок 1. Первый способ

Проведем DH АС , следовательно по тереме о трех перпендикулярах D 1 H АС и (DD 1 H )⊥АС . Проведем прямую DT перпендикулярно D 1 H . Прямая DT лежит в плоскости DD 1 H , следовательно DT AC . Следовательно, DT АС D 1.

А DC найдем гипотенузу АС и высоту DH

Из прямоугольного треугольника D 1 DH найдем гипотенузу D 1 H и высоту DT

Ответ: .

2 способ. Метод объемов (использование вспомогательной пирамиды ). Задачу данного типа можно свести к задаче о вычислении высоты пирамиды, где высота пирамиды является искомым расстоянием от точки до плоскости. Доказать, что эта высота и есть искомое расстояние; найти объём этой пирамиды двумя способами и выразить эту высоту.

Отметим, что при данном методе нет необходимости в построении перпендикуляра из данной точки к данной плоскости.

Прямоугольный параллелепипед - параллелепипед, все грани которого являются прямоугольниками.

AB =CD =2, BC =AD =4, AA 1 =6.

Искомым расстоянием будет высота h пирамиды ACD 1 D , опущенной из вершины D на основание ACD 1 (рис. 2).

Вычислим объем пирамиды ACD 1 D двумя способами.

Вычисляя, первым способом за основание примем ∆ ACD 1 , тогда

Вычисляя, вторым способом за основание примем ∆ ACD , тогда

Приравняем правые части последних двух равенств, получим

Рисунок 2. Второй способ

Из прямоугольных треугольников АС D , ADD 1 , CDD 1 найдем гипотенузы, используя теорему Пифагора

ACD

Вычислим площадь треугольника АС D 1 , используя формулу Герона

Ответ: .

3 способ. Координатный метод.

Пусть дана точка M (x 0 ,y 0 ,z 0) и плоскость α , заданная уравнением ax +by +cz +d =0 в прямоугольной декартовой системе координат. Расстояние от точки M до плоскости α можно вычислить по формуле:

Введем систему координат (рис. 3). Начало координат в точке В ;

Прямая АВ - ось х , прямая ВС - ось y , прямая BB 1 - ось z .

Рисунок 3. Третий способ

B (0,0,0), А (2,0,0), С (0,4,0), D (2,4,0), D 1 (2,4,6).

Пусть a х+ by + cz + d =0 – уравнение плоскости ACD 1 . Подставляя в него координаты точек A , C , D 1 получим:

Уравнение плоскости ACD 1 примет вид

Ответ: .

4 способ. Векторный метод.

Введем базис (рис. 4) , .

Рисунок 4. Четвертый способ

Рассмотрим в пространстве некоторую плоскость π и произвольную точку M 0 . Выберем для плоскости единичный нормальный вектор n с началом в некоторой точке М 1 ∈ π, и пусть р(М 0 ,π) - расстояние от точки М 0 до плоскости π. Тогда (рис. 5.5)

р(М 0 ,π) = | пр n M 1 M 0 | = |nM 1 M 0 |, (5.8)

так как |n| = 1.

Если плоскость π задана в прямоугольной системе координат своим общим уравнением Ax + By + Cz + D = 0, то ее нормальным вектором является вектор с координатами {A; B; C} и в качестве единичного нормального вектора можно выбрать

Пусть (x 0 ; y 0 ; z 0) и (x 1 ; y 1 ; z 1) координаты точек M 0 и M 1 . Тогда выполнено равенство Ax 1 + By 1 + Cz 1 + D = 0, так как точка M 1 принадлежит плоскости, и можно найти координаты вектора M 1 M 0 : M 1 M 0 = {x 0 -x 1 ; y 0 -y 1 ; z 0 -z 1 }. Записывая скалярное произведение nM 1 M 0 в координатной форме и преобразуя (5.8), получаем


поскольку Ax 1 + By 1 + Cz 1 = - D. Итак, чтобы вычислить расстояние от точки до плоскости нужно подставить координаты точки в общее уравнение плоскости, а затем абсолютную величину результата разделить на нормирующий множитель, равный длине соответствующего нормального вектора.

Данная статья рассказывает об определении расстояния от точки до плоскости. произведем разбор методом координат, который позволит находить расстояние от заданной точки трехмерного пространства. Для закрепления рассмотрим примеры нескольких задач.

Расстояние от точки до плоскости находится посредством известного расстояния от точки до точки, где одна из них заданная, а другая – проекция на заданную плоскость.

Когда в пространстве задается точка М 1 с плоскостью χ , то через точку можно провести перпендикулярную плоскости прямую. Н 1 является общей точкой их пересечения. Отсюда получаем, что отрезок М 1 Н 1 – это перпендикуляр,который провели из точки М 1 к плоскости χ , где точка Н 1 – основание перпендикуляра.

Определение 1

Называют расстояние от заданной точки к основанию перпендикуляра, который провели из заданной точки к заданной плоскости.

Определение может быть записано разными формулировками.

Определение 2

Расстоянием от точки до плоскости называют длину перпендикуляра, который провели из заданной точки к заданной плоскости.

Расстояние от точки М 1 к плоскости χ определяется так: расстояние от точки М 1 до плоскости χ будет являться наименьшим от заданной точки до любой точки плоскости. Если точка Н 2 располагается в плоскости χ и не равна точке Н 2 , тогда получаем прямоугольный треугольник вида М 2 H 1 H 2 , который является прямоугольным, где имеется катет М 2 H 1 , М 2 H 2 – гипотенуза. Значит, отсюда следует, что M 1 H 1 < M 1 H 2 . Тогда отрезок М 2 H 1 считается наклонной, которая проводится из точки М 1 до плоскости χ . Мы имеем, что перпендикуляр, проведенный из заданной точки к плоскости, меньше наклонной, которую проводят из точки к заданной плоскости. Рассмотрим этот случай на рисунке, приведенном ниже.

Расстояние от точки до плоскости – теория, примеры, решения

Существует ряд геометрических задач, решения которых должны содержать расстояние от точки до плоскости. Способы выявления этого могут быть разными. Для разрешения применяют теорему Пифагора или подобия треугольников. Когда по условию необходимо рассчитать расстояние от точки до плоскости, заданные в прямоугольной системе координат трехмерного пространства, решают методом координат. Данный пункт рассматривает этот метод.

По условию задачи имеем, что задана точка трехмерного пространства с координатами M 1 (x 1 , y 1 , z 1) с плоскостью χ , необходимо определить расстояние от М 1 к плоскости χ . Для решения применяется несколько способов решения.

Первый способ

Данный способ основывается на нахождении расстояния от точки до плоскости при помощи координат точки Н 1 , которые являются основанием перпендикуляра из точки М 1 к плоскости χ . Далее необходимо вычислить расстояние между М 1 и Н 1 .

Для решения задачи вторым способом применяют нормальное уравнение заданной плоскости.

Второй способ

По условию имеем, что Н 1 является основанием перпендикуляра, который опустили из точки М 1 на плоскость χ . Тогда определяем координаты (x 2 , y 2 , z 2) точки Н 1 . Искомое расстояние от М 1 к плоскости χ находится по формуле M 1 H 1 = (x 2 - x 1) 2 + (y 2 - y 1) 2 + (z 2 - z 1) 2 , где M 1 (x 1 , y 1 , z 1) и H 1 (x 2 , y 2 , z 2) . Для решения необходимо узнать координаты точки Н 1 .

Имеем, что Н 1 является точкой пересечения плоскости χ с прямой a , которая проходит через точку М 1 , расположенную перпендикулярно плоскости χ . Отсюда следует, что необходимо составление уравнения прямой, проходящей через заданную точку перпендикулярно к заданной плоскости. Именно тогда сможем определить координаты точки Н 1 . Необходимо произвести вычисление координат точки пересечения прямой и плоскости.

Алгоритм нахождения расстояния от точки с координатами M 1 (x 1 , y 1 , z 1) к плоскости χ :

Определение 3

  • составить уравнение прямой а, проходящей через точку М 1 и одновременно
  • перпендикулярной к плоскости χ ;
  • найти и вычислить координаты (x 2 , y 2 , z 2) точки Н 1 , являющимися точками
  • пересечения прямой a с плоскостью χ ;
  • вычислить расстояние от М 1 до χ , используя формулу M 1 H 1 = (x 2 - x 1) 2 + (y 2 - y 1) 2 + z 2 - z 1 2 .

Третий способ

В заданной прямоугольной системе координат О х у z имеется плоскость χ , тогда получаем нормальное уравнение плоскости вида cos α · x + cos β · y + cos γ · z - p = 0 . Отсюда получаем, что расстояние M 1 H 1 с точкой M 1 (x 1 , y 1 , z 1) , проведенной на плоскость χ , вычисляемое по формуле M 1 H 1 = cos α · x + cos β · y + cos γ · z - p . Эта формула справедлива, так как это установлено благодаря теореме.

Теорема

Если задана точка M 1 (x 1 , y 1 , z 1) в трехмерном пространстве, имеющая нормальное уравнение плоскости χ вида cos α · x + cos β · y + cos γ · z - p = 0 , тогда вычисление расстояния от точки до плоскости M 1 H 1 производится из формулы M 1 H 1 = cos α · x + cos β · y + cos γ · z - p , так как x = x 1 , y = y 1 , z = z 1 .

Доказательство

Доказательство теоремы сводится к нахождению расстояния от точки до прямой. Отсюда получаем, что расстояние от M 1 до плоскости χ - это и есть модуль разности числовой проекции радиус-вектора M 1 с расстоянием от начала координат к плоскости χ . Тогда получаем выражение M 1 H 1 = n p n → O M → - p . Нормальный вектор плоскости χ имеет вид n → = cos α , cos β , cos γ , а его длина равняется единице, n p n → O M → - числовая проекция вектора O M → = (x 1 , y 1 , z 1) по направлению, определяемым вектором n → .

Применим формулу вычисления скалярных векторов. Тогда получаем выражение для нахождения вектора вида n → , O M → = n → · n p n → O M → = 1 · n p n → O M → = n p n → O M → , так как n → = cos α , cos β , cos γ · z и O M → = (x 1 , y 1 , z 1) . Координатная форма записи примет вид n → , O M → = cos α · x 1 + cos β · y 1 + cos γ · z 1 , тогда M 1 H 1 = n p n → O M → - p = cos α · x 1 + cos β · y 1 + cos γ · z 1 - p . Теорема доказана.

Отсюда получаем, что расстояние от точки M 1 (x 1 , y 1 , z 1) к плоскости χ вычисляется при помощи подстановки в левую часть нормального уравнения плоскости cos α · x + cos β · y + cos γ · z - p = 0 вместо х, у, z координаты x 1 , y 1 и z 1 ,относящиеся к точке М 1 , взяв абсолютную величину полученного значения.

Рассмотрим примеры нахождения расстояния от точки с координатами до заданной плоскости.

Пример 1

Вычислить расстояние от точки с координатами M 1 (5 , - 3 , 10) к плоскости 2 x - y + 5 z - 3 = 0 .

Решение

Решим задачу двумя способами.

Первый способ начнется с вычисления направляющего вектора прямой a . По условию имеем, что заданное уравнение 2 x - y + 5 z - 3 = 0 является уравнением плоскости общего вида, а n → = (2 , - 1 , 5) является нормальным вектором заданной плоскости. Его применяют в качестве направляющего вектора прямой a , которая перпендикулярна относительно заданной плоскости. Следует записать каноническое уравнение прямой в пространстве, проходящее через M 1 (5 , - 3 , 10) с направляющим вектором с координатами 2 , - 1 , 5 .

Уравнение получит вид x - 5 2 = y - (- 3) - 1 = z - 10 5 ⇔ x - 5 2 = y + 3 - 1 = z - 10 5 .

Следует определить точки пересечения. Для этого нежно объединить уравнения в систему для перехода от канонического к уравнениям двух пересекающихся прямых. Данную точку примем за Н 1 . Получим, что

x - 5 2 = y + 3 - 1 = z - 10 5 ⇔ - 1 · (x - 5) = 2 · (y + 3) 5 · (x - 5) = 2 · (z - 10) 5 · (y + 3) = - 1 · (z - 10) ⇔ ⇔ x + 2 y + 1 = 0 5 x - 2 z - 5 = 0 5 y + z + 5 = 0 ⇔ x + 2 y + 1 = 0 5 x - 2 z - 5 = 0

После чего необходимо разрешить систему

x + 2 y + 1 = 0 5 x - 2 z - 5 = 0 2 x - y + 5 z - 3 = 0 ⇔ x + 2 y = 1 5 x - 2 z = 5 2 x - y + 5 z = 3

Обратимся к правилу решения системы по Гауссу:

1 2 0 - 1 5 0 - 2 5 2 - 1 5 3 ~ 1 2 0 - 1 0 - 10 - 2 10 0 - 5 5 5 ~ 1 2 0 - 1 0 - 10 - 2 10 0 0 6 0 ⇒ ⇒ z = 0 6 = 0 , y = - 1 10 · 10 + 2 · z = - 1 , x = - 1 - 2 · y = 1

Получаем, что H 1 (1 , - 1 , 0) .

Производим вычисления расстояния от заданной точки до плоскости. Берем точки M 1 (5 , - 3 , 10) и H 1 (1 , - 1 , 0) и получаем

M 1 H 1 = (1 - 5) 2 + (- 1 - (- 3)) 2 + (0 - 10) 2 = 2 30

Второй способ решения заключается в том, чтобы для начала привести заданное уравнение 2 x - y + 5 z - 3 = 0 к нормальному виду. Определяем нормирующий множитель и получаем 1 2 2 + (- 1) 2 + 5 2 = 1 30 . Отсюда выводим уравнение плоскости 2 30 · x - 1 30 · y + 5 30 · z - 3 30 = 0 . Вычисление левой части уравнения производится посредствам подстановки x = 5 , y = - 3 , z = 10 , причем нужно взять расстояние от M 1 (5 , - 3 , 10) до 2 x - y + 5 z - 3 = 0 по модулю. Получаем выражение:

M 1 H 1 = 2 30 · 5 - 1 30 · - 3 + 5 30 · 10 - 3 30 = 60 30 = 2 30

Ответ: 2 30 .

Когда плоскость χ задается одним из способов раздела способы задания плоскости, тогда нужно для начала получить уравнение плоскости χ и вычислять искомое расстояние при помощи любого метода.

Пример 2

В трехмерном пространстве задаются точки с координатами M 1 (5 , - 3 , 10) , A (0 , 2 , 1) , B (2 , 6 , 1) , C (4 , 0 , - 1) . Вычислить расстяние от М 1 к плоскости А В С.

Решение

Для начала необходимо записать уравнение плоскости, проходящее через заданные три точки с координатами M 1 (5 , - 3 , 10) , A (0 , 2 , 1) , B (2 , 6 , 1) , C (4 , 0 , - 1) .

x - 0 y - 2 z - 1 2 - 0 6 - 2 1 - 1 4 - 0 0 - 2 - 1 - 1 = 0 ⇔ x y - 2 z - 1 2 4 0 4 - 2 - 2 = 0 ⇔ ⇔ - 8 x + 4 y - 20 z + 12 = 0 ⇔ 2 x - y + 5 z - 3 = 0

Отсюда следует, что задача имеет аналогичное предыдущему решение. Значит, расстояние от точки М 1 к плоскости А В С имеет значение 2 30 .

Ответ: 2 30 .

Нахождение расстояния от заданной точки на плоскости или к плоскости, которым они параллельны, удобнее, применив формулу M 1 H 1 = cos α · x 1 + cos β · y 1 + cos γ · z 1 - p . Отсюда получим, что нормальные уравнения плоскостей получают в несколько действий.

Пример 3

Найти расстояние от заданной точки с координатами M 1 (- 3 , 2 , - 7) к координатной плоскости О х у z и плоскости, заданной уравнением 2 y - 5 = 0 .

Решение

Координатная плоскость О у z соответствует уравнению вида х = 0 . Для плоскости О у z оно является нормальным. Поэтому необходимо подставить в левую часть выражения значения х = - 3 и взять модуль значения расстояния от точки с координатами M 1 (- 3 , 2 , - 7) к плоскости. Получаем значение, равное - 3 = 3 .

После преобразования нормальное уравнение плоскости 2 y - 5 = 0 получит вид y - 5 2 = 0 . Тогда можно найти искомое расстояние от точки с координатами M 1 (- 3 , 2 , - 7) к плоскости 2 y - 5 = 0 . Подставив и вычислив, получаем 2 - 5 2 = 5 2 - 2 .

Ответ: Искомое расстояние от M 1 (- 3 , 2 , - 7) до О у z имеет значение 3 , а до 2 y - 5 = 0 имеет значение 5 2 - 2 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Поиск расстояния от точки до плоскости - частая задача, возникающая при решении различных задач аналитической геометрии, например, к этой задаче можно свести нахождение расстояния между двумя скрещивающимися прямыми или между прямой и параллельной ей плоскостью.

Рассмотрим плоскость $β$ и точку $M_0$ с координатами $(x_0;y_0; z_0)$, не принадлежащую плоскости $β$.

Определение 1

Кратчайшим расстоянием между точкой и плоскостью будет перпендикуляр, опущенный из точки $М_0$ на плоскость $β$.

Рисунок 1. Расстояние от точки, до плоскости. Автор24 - интернет-биржа студенческих работ

Ниже рассмотрено как найти расстояние от точки до плоскости координатным методом.

Вывод формулы для координатного метода поиска расстояния от точки до плоскости в пространстве

Перпендикуляр из точки $M_0$, пересекающийся с плоскостью $β$ в точке $M_1$ с координатами $(x_1;y_1; z_1)$, лежит на прямой, направляющим вектором которой является нормальный вектор плоскости $β$. При этом длина единичного вектора $n$ равна единице. Соответственно этому, расстояние от $β$ до точки $M_0$ составит:

$ρ= |\vec{n} \cdot \vec{M_1M_0}|\left(1\right)$, где $\vec{M_1M_0}$ - нормальный вектор плоскости $β$, а $\vec{n}$ - единичный нормальный вектор рассматриваемой плоскости.

В случае, когда уравнение плоскости задано в общем виде $Ax+ By + Cz + D=0$, координаты нормального вектора плоскости представляют собой коэффициенты уравнения $\{A;B;C\}$, а единичный нормальный вектор в этом случае имеет координаты, вычисляемые по следующему уравнению:

$\vec{n}= \frac{\{A;B;C\}}{\sqrt{A^2 + B^2 + C^2}}\left(2\right)$.

Теперь можно найти координаты нормального вектора $\vec{M_1M_0}$:

$\vec{M_0M_1}= \{x_0 – x_1;y_0-y_1;z_0-z_1\}\left(3\right)$.

Также выразим коэффициент $D$, используя координаты точки, лежащей в плоскости $β$:

$D= Ax_1+By_1+Cz_1$

Координаты единичного нормального вектора из равенства $(2)$ можно подставить в уравнение плоскости $β$, тогда мы имеем:

$ρ= \frac{|A(x_0 -x_1) + B(y_0-y_1)+C(z_0-z_1)|}{\sqrt{A^2+B^2+C^2}}= \frac{|Ax_0+ By_0 + Cz_0-(Ax_1+By_1+Cz_1)|}{\sqrt{A^2+B^2+C^2}} = \frac{Ax_0+ By_0 + Cz_0 + D}{\sqrt{A^2+B^2+C^2}}\left(4\right)$

Равенство $(4)$ является формулой для нахождения расстояния от точки до плоскости в пространстве.

Общий алгоритм для нахождения расстояния от точки $M_0$ до плоскости

  1. Если уравнение плоскости задано не в общей форме, для начала необходимо привести его к общей.
  2. После этого необходимо выразить из общего уравнения плоскости нормальный вектор данной плоскости через точку $M_0$ и точку, принадлежащую заданной плоскости, для этого нужно воспользоваться равенством $(3)$.
  3. Следующий этап - поиск координат единичного нормального вектора плоскости по формуле $(2)$.
  4. Наконец, можно приступить к поиску расстояния от точки до плоскости, это осуществляется с помощью вычисления скалярного произведения векторов $\vec{n}$ и $\vec{M_1M_0}$.

, Конкурс «Презентация к уроку»

Класс: 11

Презентация к уроку
















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели:

  • обобщение и систематизация знаний и умений учащихся;
  • развитие умений анализировать, сравнивать, делать выводы.

Оборудование:

  • мультимедийный проектор;
  • компьютер;
  • листы с текстами задач

ХОД ЗАНЯТИЯ

I. Организационный момент

II. Этап актуализации знаний (слайд 2)

Повторяем как определяется расстояние от точки до плоскости

III. Лекция (cлайды 3-15)

На занятии мы рассмотрим различные способы нахождения расстояния от точки до плоскости.

Первый метод: поэтапно-вычислительный

Расстояние от точки М до плоскости α:
– равно расстоянию до плоскости α от произвольной точки Р, лежащей на прямой a, которая проходит через точку М и параллельна плоскости α;
– равно расстоянию до плоскости α от произвольной точки Р, лежащей на плоскости β, которая проходит через точку М и параллельна плоскости α.

Решим следующие задачи:

№1. В кубе А…D 1 найти расстояние от точки С 1 до плоскости АВ 1 С.

Осталось вычислить значение длины отрезка О 1 Н.

№2. В правильной шестиугольной призме А…F 1 , все ребра которой равны 1, найдите расстояние от точки А до плоскости DEA 1 .

Следующий метод: метод объемов .

Если объем пирамиды АВСМ равен V, то расстояние от точки М до плоскости α, содержащей ∆АВС вычисляется по формуле ρ(М; α) = ρ(М; АВС) =
При решении задач мы используем равенство объемов одной фигуры, выраженные двумя различными способами.

Решим следующую задачу:

№3. Ребро AD пирамиды DABC перпендикулярно плоскости основания АВС. Найдите расстояние от А до плоскости, проходящей через середины ребер АВ, АС и АD, если.

При решении задач координатным методом расстояние от точки М до плоскости α можно вычислить по формуле ρ(М; α) = , где М(х 0 ; у 0 ; z 0), а плоскость задана уравнением ax + by + cz + d = 0

Решим следующую задачу:

№4. В единичном кубе A…D 1 найдите расстояние от точки А 1 до плоскости ВDC 1 .

Введем систему координат с началом в точке А, ось у пройдет по ребру АВ, ось х – по ребру АD, ось z – по ребру АА 1 . Тогда координаты точек В (0; 1; 0) D (1; 0; 0;) C 1 (1; 1; 1)
Составим уравнение плоскости, проходящей через точки В, D, C 1 .

Тогда – dx – dy + dz + d = 0 x + y – z – 1= 0. Следовательно, ρ =

Следующий метод, который можно использовать при решении задач данного типа – метод опорных задач.

Применение данного метода состоит в применении известных опорных задач, которые формулируются как теоремы.

Решим следующую задачу:

№5. В единичном кубе А…D 1 найдите расстояние от точки D 1 до плоскости АВ 1 С.

Рассмотрим применение векторного метода.

№6. В единичном кубе А…D 1 найдите расстояние от точки А 1 до плоскости ВDС 1 .

Итак, мы рассмотрели различные способы, которые можно использовать при решении данного типа задач. Выбор того или иного метода зависит от конкретной задачи и ваших предпочтений.

IV. Работа в группах

Попробуйте решить задачу разными способами.

№1. Ребро куба А…D 1 равно . Найдите расстояние от вершины С до плоскости BDC 1 .

№2. В правильном тетраэдре АВСD с ребром найдите расстояние от точки А до плоскости BDC

№3. В правильной треугольной призме АВСА 1 В 1 С 1 все ребра которой равны 1, найдите расстояние от А до плоскости ВСА 1 .

№4. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, найдите расстояние от А до плоскости SCD.

V. Итог урока, домашнее задание, рефлексия