Основные понятия фмп частные производные полный дифференциал. Полные дифференциалы и частные производные высших порядков. Признак полного дифференциала. Применение производных для исследования функций

Линеаризация функции. Касательная плоскость и нормаль к поверхности.

Производные и дифференциалы высших порядков.

1. Частные производные ФНП *)

Рассмотрим функцию и = f (P), РÎDÌR n или, что то же самое,

и = f (х 1 , х 2 , ..., х п ).

Зафиксируем значения переменных х 2 , ..., х п , а переменной х 1 дадим приращение Dх 1 . Тогда функция и получит приращение , определяемое равенством

= f (х 1 +Dх 1 , х 2 , ..., х п ) – f (х 1 , х 2 , ..., х п ).

Это приращение называют частным приращением функции и по переменной х 1 .

Определение 7.1. Частной производной функции и = f (х 1 , х 2 , ..., х п ) по переменной х 1 называется предел отношения частного приращения функции к приращению аргумента Dх 1 при Dх 1 ® 0 (если этот предел существует).

Обозначается частная производная по х 1 символами

Таким образом, по определению

Аналогично определяются частные производные по остальным переменным х 2 , ..., х п . Из определения видно, что частная производная функции по переменной х i – это обычная производная функции одной переменной х i , когда остальные переменные считаются константами. Поэтому все ранее изученные правила и формулы дифференцирования могут быть использованы для отыскания производной функции нескольких переменных.

Например, для функции u = x 3 + 3xy z 2 имеем

Таким образом, если функция нескольких переменных задана явно, то вопросы существования и отыскания ее частных производных сводятся к соответствующим вопросам относительно функции одной переменной – той, по которой необходимо определить производную.

Рассмотрим неявно заданную функцию. Пусть уравнение F(x , y ) = 0 определяет неявную функцию одной переменной х . Справедлива

Теорема 7.1.

Пусть F(x 0 , y 0) = 0 и функции F(x , y ), F¢ х (x , y ), F¢ у (x , y ) непрерывны в некоторой окрестности точки (х 0 , у 0), причем F¢ у (x 0 , y 0) ¹ 0. Тогда функция у , заданная неявно уравнением F(x , y ) = 0, имеет в точке (x 0 , y 0) производную, которая равна

.

Если условия теоремы выполняются в любой точке области DÌ R 2 , то в каждой точке этой области .

Например, для функции х 3 –2у 4 + ух + 1 = 0 находим

Пусть теперь уравнение F(x , y , z ) = 0 определяет неявную функцию двух переменных. Найдем и . Так как вычисление производной по х производится при фиксированном (постоянном) у , то в этих условиях равенство F(x , y =const, z ) = 0 определяет z как функцию одной переменной х и согласно теореме 7.1 получим

.

Аналогично .

Таким образом, для функции двух переменных, заданной неявно уравнением , частные производные находят по формулам: ,

Каждая частная производная (по x и по y ) функции двух переменных представляет собой обыкновенную производную функции одной переменной при фиксированном значении другой переменной:

(где y = const),

(где x = const).

Поэтому частные производные вычисляют по формулам и правилам вычисления производных функций одной переменной , считая при этом другую переменную постоянной (константой).

Если Вам не нужен разбор примеров и необходимого для этого минимума теории, а нужно лишь решение Вашей задачи, то переходите к калькулятору частных производных онлайн .

Если тяжело сосредоточиться, чтобы отслеживать, где в функции константа, то можно в черновом решении примера вместо переменной с фиксированным значением подставить любое число - тогда можно будет быстрее вычислить частную производную как обыкновенную производную функции одной переменной. Надо только не забыть при чистовом оформлении вернуть на место константу (переменную с фиксированном значением).

Описанное выше свойство частных производных следует из определения частной производной, которое может попасться в экзаменационных вопросах. Поэтому для ознакомления с определением ниже можно открыть теоретическую справку.

Понятие непрерывности функции z = f (x , y ) в точке определяется аналогично этому понятию для функции одной переменной.

Функция z = f (x , y ) называется непрерывной в точке если

Разность (2) называется полным приращением функции z (оно получается в результате приращений обоих аргументов).

Пусть заданы функция z = f (x , y ) и точка

Если изменение функции z происходит при изменении только одного из аргументов, например, x , при фиксированном значении другого аргумента y , то функция получит приращение

называемое частным приращением функции f (x , y ) по x .

Рассматривая изменение функции z в зависимости от изменения только одного из аргументов, мы фактически переходим к функции одной переменной.

Если существует конечный предел

то он называется частной производной функции f (x , y ) по аргументу x и обозначается одним из символов

(4)

Аналогично определяются частное приращение z по y :

и частная производная f (x , y ) по y :

(6)

Пример 1.

Решение. Находим частную производную по переменной "икс":

(y фиксировано);

Находим частную производную по переменной "игрек":

(x фиксировано).

Как видно, не имеет значения, в какой степени переменная, которая фиксирована: в данном случае это просто некоторое число, являющееся множителем (как в случае обычной производной) при переменной, по которой находим частную производную. Если же фиксированная переменная не умножена на переменную, по которой находим частную производную, то эта одинокая константа, безразлично, в какой степени, как и в случае обычной производной, обращается в нуль.

Пример 2. Дана функция

Найти частные производные

(по иксу) и (по игреку) и вычислить их значения в точке А (1; 2).

Решение. При фиксированном y производная первого слагаемого находится как производная степенной функции (таблица производных функций одной переменной ):

.

При фиксированном x производная первого слагаемого находится как производная показательной функции, а второго – как производная постоянной:

Теперь вычислим значения этих частных производных в точке А (1; 2):

Проверить решение задач с частными производными можно на калькуляторе частных производных онлайн .

Пример 3. Найти частные производные функции

Решение. В один шаг находим

(y x , как если бы аргументом синуса было 5x : точно так же 5 оказывается перед знаком функции);

(x фиксировано и является в данном случае множителем при y ).

Проверить решение задач с частными производными можно на калькуляторе частных производных онлайн .

Аналогично определяются частные производные функции трёх и более переменных.

Если каждому набору значений (x ; y ; ...; t ) независимых переменных из множества D соответствует одно определённое значение u из множества E , то u называют функцией переменных x , y , ..., t и обозначают u = f (x , y , ..., t ).

Для функций трёх и более переменных геометрической интерпретации не существует.

Частные производные функции нескольких переменных определяются и вычисляются также в предположении, что меняется только одна из независимых переменных, а другие при этом фиксированы.

Пример 4. Найти частные производные функции

.

Решение. y и z фиксированы:

x и z фиксированы:

x и y фиксированы:

Найти частные производные самостоятельно, а затем посмотреть решения

Пример 5.

Пример 6. Найти частные производные функции .

Частная производная функции нескольких переменных имеет тот же механический смысл, что и производная функции одной переменной , - это скорость изменения функции относительно изменения одного из аргументов.

Пример 8. Количественная величина потока П пассажиров железных дорог может быть выражена функцией

где П – количество пассажиров, N – число жителей корреспондирующих пунктов, R – расстоянии между пунктами.

Частная производная функции П по R , равная

показывает, что уменьшение потока пассажиров обратно пропорционально квадрату расстояния между корреспондирующими пунктами при одной и той же численности жителей в пунктах.

Частная производная П по N , равная

показывает, что увеличение потока пассажиров пропорционально удвоенному числу жителей населённых пунктов при одном и том же расстоянии между пунктами.

Проверить решение задач с частными производными можно на калькуляторе частных производных онлайн .

Полный дифференциал

Произведение частной производной на приращение соответствующей независимой переменной называется частным дифференциалом. Частные дифференциалы обозначаются так:

Сумма частных дифференциалов по всем независимым переменным даёт полный дифференциал. Для функции двух независимых переменных полный дифференциал выражается равенством

(7)

Пример 9. Найти полный дифференциал функции

Решение. Результат использования формулы (7):

Функция, имеющая полный дифференциал в каждой точке некоторой области, называется дифференцируемой в этой области.

Найти полный дифференциал самостоятельно, а затем посмотреть решение

Так же как и в случае функции одной переменной, из дифференцируемости функции в некоторой области следует её непрерывность в этой области, но не наоборот.

Сформулируем без доказательств достаточное условие дифференцируемости функции.

Теорема. Если функция z = f (x , y ) имеет непрерывные частные производные

в данной области, то она дифференцируема в этой области и её дифференциал выражается формулой (7).

Можно показать, что подобно тому, как в случае функции одной переменной дифференциал функции является главной линейной частью приращения функции , так и в случае функции нескольких переменных полный дифференциал является главной, линейной относительно приращений независимых переменных частью полного приращения функции.

Для функции двух переменных полное приращение функции имеет вид

(8)

где α и β – бесконечно малые при и .

Частные производные высших порядков

Частные производные и функции f (x , y ) сами являются некоторыми функциями тех же переменных и, в свою очередь, могут иметь производные по разным переменным, которые называются частными производными высших порядков.

Пусть функция определена в некоторой (открытой) областиD точек
мерного пространства, и
– точка в этой области, т.е.
D .

Частным приращением функции многих переменных по какой-либо переменной называется то приращение, которое получит функция, если мы дадим приращение этой переменной, считая, что все остальные переменные имеют постоянные значения.

Например, частное приращение функции по переменнойбудет

Частной производной по независимой переменной в точке
от функции называется предел (если существует) отношения частного приращения
функции к приращению
переменнойпри стремлении
к нулю:

Частную производную обозначают одним из символов:

;
.

Замечание. Индекс внизу в этих обозначениях лишь указывает, по какой из переменных берется производная, и не связана с тем, в какой точке
эта производная вычисляется.

Вычисление частных производных не представляет ничего нового по сравнению с вычислением обыкновенной производной, необходимо только помнить, что при дифференцировании функции по какой-либо переменной все остальные переменные принимаются за постоянные. Покажем это на примерах.

Пример 1. Найти частные производные функции
.

Решение . При вычислении частной производной функции
по аргументурассматриваем функциюкак функцию только одной переменной, т.е. считаем, чтоимеет фиксированное значение. При фиксированномфункция
является степенной функцией аргумента. По формуле дифференцирования степенной функции получаем:

Аналогично, при вычислении частной производной считаем, что фиксировано значение, и рассматриваем функцию
как показательную функцию аргумента. В итоге получаем:

Пример 2 . Н айти частные производные ифункции
.

Решение. При вычислении частной производной по заданную функциюмы будем рассматривать как функцию одной переменной, а выражения, содержащие, будут постоянными множителями, т.е.
выступает в роли постоянного коэффициентапри степенной функции(
). Дифференцируя это выражение по , получим:

.

Теперь, наоборот, функцию рассматриваем как функцию одной переменной, в то время как выражения, содержащие, выступают в роли коэффициента
(
).Дифференцируя по правилам дифференцирования тригонометрических функций, получаем:

Пример 3. Вычислить частные производные функции
в точке
.

Решение. Находим сначала частные производные данной функции в произвольной точке
её области определения. При вычислении частной производной посчитаем, что
являются постоянными.

при дифференцировании по постоянными будут
:

а при вычислении частных производных по и по, аналогично, постоянными будут, соответственно,
и
, т.е.:

Теперь вычислим значения этих производных в точке
, подставляя в их выражения конкретные значения переменных. В итоге получаем:

11. Частные и полный дифференциалы функции

Если теперь к частному приращению
применить теорему Лагранжа о конечных приращениях по переменной, то, считаянепрерывной, получим следующие соотношения:

где
,
– бесконечно малая величина.

Частным дифференциалом функции по переменнойназывается главная линейная часть частного приращения
, равная произведению частной производной по этой переменной на приращение этой переменной, и обозначается

Очевидно, частный дифференциал отличается от частного приращения на бесконечно малую высшего порядка.

Полным приращением функции многих переменных называется то её приращение, которое она получит, когда мы всем независимым переменным дадим приращение, т.е.

где все
, зависят оти вместе с ними стремятся к нулю.

Под дифференциалами независимых переменных условились подразумеватьпроизвольные приращения
и обозначать их
. Таким образом, выражение частного дифференциала примет вид:

Например, частный дифференциал поопределяется так:

.

Полным дифференциалом
функции многих переменныхназывается главная линейная часть полного приращения
, равная, т.е.сумме всех её частных дифференциалов:

Если функция
имеет непрерывные частные производные

в точке
, то онадифференцируема в данной точке .

При достаточно малом для дифференцируемой функции
имеют место приближенные равенства

,

с помощью которых можно производить приближенные вычисления.

Пример 4. Найти полный дифференциал функции
трёх переменных
.

Решение. Прежде всего, находим частные производные:

Заметив, что они непрерывны при всех значениях
, находим:

Для дифференциалов функций многих переменных верны все теоремы о свойствах дифференциалов, доказанные для случая функций одной переменной, например: если инепрерывные функции переменных
, имеющие непрерывные частные производные по всем переменным, аи– произвольные постоянные, то:

(6)

Частной производной функции z = f(x, y по переменной х называется производная этой функции при постоянном значении переменной у, она обозначается или z" х.

Частной производной функции z = f(x, y) по переменной у называется производная по у при постоянном значении переменной у; она обозначается или z" у.

Частная производная функции нескольких переменных по одной переменной определяется как производная этой функции по соответствующей переменной при условии, что остальные переменные считаются постоянными.

Полным дифференциалом функции z = f(x, y) в некоторой точке М(Х, у) называется выражение

,

Где и вычисляются в точке М(х, у), а dx = , dy = у.

Пример 1

Вычислить полный дифференциал функции.

z = х 3 – 2х 2 у 2 + у 3 в точке М(1; 2)

Решение:

1) Находим частные производные:

2) Вычислим значение частных производных в точке М(1; 2)

() М = 3 · 1 2 – 4 · 1 · 2 2 = -13

() М = - 4 · 1 2 · 2 + 3 · 2 2 = 4

3) dz = - 13dx + 4 dy

Вопросы для самоконтроля:

1. Что называется первообразной? Перечислить свойства первообразной.

2. Что называется неопределенным интегралом?

3. Перечислить свойства неопределенного интеграла.

4. Перечислить основные формулы интегрирования.

5. Какие методы интегрирования вы знаете?

6. В чем заключается суть формулы Ньютона – Лейбница?

7. Дать определение определенного интеграла.

8. В чем суть вычисления определенного интеграла методом подстановки?

9. В чем суть метода вычисления определенного интеграла по частям?

10. Какая функция называется функцией двух переменных? Как она обозначается?

11. Какая функция называется функцией трех переменных?

12. Какое множество называется областью определения функции?

13. С помощью каких неравенств можно задать замкнутую область Д на плоскости?

14. Что называется частной производной функции z = f(x, y) по переменной х? Как она обозначается?

15. Что называется частной производной функции z = f(x, y) по переменной у? Как она обозначается?

16. Какое выражение называется полным дифференциалом функции

Тема 1.2 Обыкновенные дифференциальные уравнения.

Задачи, приводящие к дифференциальным уравнениям. Дифференци­альные уравнения с разделяющимися переменными. Общие и частные ре­шения. Однородные дифференциальные уравнения первого порядка. Ли­нейные однородные уравнения второго порядка с постоянными коэффици­ентами.

Практическое занятие № 7 «Нахождение общих и частных решений дифференциальных уравнений с разделяющимися переменными»*

Практическое занятие № 8 «Линейные и однородные дифференциальные уравнения»

Практическое занятие № 9 «Решение дифференциальных уравнений 2 - го порядка с постоянными коэффициентами»*

Л4, глава 15, стр. 243 – 256

Методические указания

Понятие функции двух переменных

Величина z называется функцией двух независимых переменных x и y , если каждой паре допустимых значений этих величин по определенному закону соответствует одно вполне определенное значение величины z. Независимые переменные x и y называют аргументами функции.

Такая функциональная зависимость аналитически обозначается

Z = f (x,y), (1)

Значения аргументов x и y, которым соответствуют действительные значения функции z, считаются допустимыми , а множество всех допустимых пар значений x и y называют областью определения функции двух переменных.

Для функции нескольких переменных, в отличие от функции одной переменной, вводят понятия ее частных приращений по каждому из аргументов и понятие полного приращения.

Частным приращением Δ x z функции z=f (x,y) по аргументу x называется приращение, которое получает эта функция, если ее аргумент x получает приращение Δx при неизменном y :

Δ x z = f (x + Δx, y) -f (x, y), (2)

Частным приращением Δ y z функции z= f (x, y) по аргументу y называется приращение, которое получает эта функция, если ее аргумент y получает приращение Δy при неизменном x:

Δ y z= f (x, y + Δy) – f (x, y) , (3)

Полным приращением Δz функции z= f (x, y) по аргументам x и y называется приращение, которое получает функция, если оба ее аргумента получают приращения:

Δz= f (x+Δx, y+Δy) – f (x, y) , (4)

При достаточно малых приращениях Δx и Δy аргументов функции

имеет место приближенное равенство:

Δz Δ x z + Δ y z , (5)

причем оно тем точнее, чем меньше Δx и Δy .

Частные производные функции двух переменных

Частной производной функции z=f (x, y) по аргументу x в точке (x, y) называется предел отношения частного приращения Δ x z этой функции к соответствующему приращению Δx аргумента x при стремлении Δx к 0 и при условии, что этот предел существует:

, (6)

Аналогично определяют производную функции z=f (x, y) по аргументу y:

Кроме указанного обозначения, частные производные функции обозначают также , z΄ x , f΄ x (x, y); , z΄ y , f΄ y (x, y).

Основной смысл частной производной состоит в следующем: частная производная функции нескольких переменных по какому-либо из ее аргументов характеризует скорость изменения данной функции при изменении этого аргумента.



При вычислении частной производной функции нескольких переменных по какому-либо аргументу все остальные аргументы этой функции считаются постоянными.

Пример1. Найти частные производные функции

f (x, y)= x 2 + y 3

Решение . При нахождении частной производной этой функции по аргументу x аргумент y считаем постоянной величиной:

;

При нахождении частной производной по аргументу y аргумент x считаем постоянной величиной:

.

Частные и полный дифференциалы функции нескольких переменных

Частным дифференциалом функции нескольких переменных по какому -либо из ее аргументов называется произведение частной производной этой функции по данному аргументу на дифференциал этого аргумента:

d x z= , (7)

d y z= (8)

Здесь d x z и d y z -частные дифференциалы функции z= f (x, y) по аргументам x и y. При этом

dx= Δx; dy= Δy, (9)

Полным дифференциалом функции нескольких переменных называется сумма ее частных дифференциалов:



dz= d x z + d y z , (10)

Пример 2. Найдем частные и полный дифференциалы функции f (x, y)= x 2 + y 3 .

Так как частные производные этой функции найдены в примере 1, то получаем

d x z= 2xdx; d y z= 3y 2 dy;

dz= 2xdx + 3y 2 dy

Частный дифференциал функции нескольких переменных по каждому из ее аргументов является главной частью соответствующего частного приращения функции .

Вследствие этого можно записать:

Δ x z d x z, Δ y z d y z, (11)

Аналитический смысл полного дифференциала заключается в том, что полный дифференциал функции нескольких переменных представляет собой главную часть полного приращения этой функции .

Таким образом, имеет место приближенное равенство

Δz dz, (12)

На использовании формулы (12) основано применение полного дифференциала в приближенных вычислениях.

Представим приращение Δz в виде

f (x + Δx; y + Δy) – f (x, y)

а полный дифференциал в виде

Тогда получаем:

f (x + Δx, y + Δy) – f (x, y) ,

, (13)

3.Цель деятельности студентов на занятии:

Студент должен знать:

1. Определение функции двух переменных.

2. Понятие частного и полного приращения функции двух переменных.

3. Определение частной производной функции нескольких переменных.

4. Физический смысл частной производной функции нескольких переменных по какому- либо из ее аргументов.

5. Определение частного дифференциала функции нескольких переменных.

6. Определение полного дифференциала функции нескольких переменных.

7. Аналитический смысл полного дифференциала.

Студент должен уметь:

1. Находить частные и полное приращение функции двух переменных.

2. Вычислять частные производные функции нескольких переменных.

3. Находить частные и полные дифференциалы функции нескольких переменных.

4. Применять полный дифференциал функции нескольких переменных в приближенных вычислениях.

Теоретическая часть :

1. Понятие функции нескольких переменных.

2. Функция двух переменных. Частное и полное приращение функции двух переменных.

3. Частная производная функции нескольких переменных.

4. Частные дифференциалы функции нескольких переменных.

5. Полный дифференциал функции нескольких переменных.

6. Применение полного дифференциала функции нескольких переменных в приближенных вычислениях.

Практическая часть:

1.Найдите частные производные функций:

1) ; 4) ;

2) z= e ху+2 x ; 5) z= 2tg хе у;

3) z= х 2 sin 2 y; 6) .

4. Дайте определение частной производной функции по данному аргументу.

5. Что называется частным и полным дифференциалом функции двух переменных? Как они связаны между собой?

6. Перечень вопросов для проверки конечного уровня знаний:

1. Равно ли в общем случае произвольной функции нескольких переменных ее полное приращение сумме всех частных приращений?

2. В чем состоит основной смысл частной производной функции нескольких переменных по какому-либо из ее аргументов?

3. В чем состоит аналитический смысл полного дифференциала?

7.Хронокарта учебного занятия:

1. Организационный момент – 5 мин.

2. Разбор темы – 20 мин.

3.Решение примеров и задач - 40 мин.

4. Текущий контроль знаний -30 мин.

5. Подведение итогов занятия – 5 мин.

8. Перечень учебной литературы к занятию :

1. Морозов Ю.В. Основы высшей математики и статистики. М., «Медицина», 2004, §§ 4.1–4.5.

2. Павлушков И.В. и др. Основы высшей математики и математической статистики. М., «ГЭОТАР-Медиа», 2006, § 3.3.