Проблемы загрязнения почв тяжелыми металлами и возможные пути их решения

Загрязнение почв по величине зон делится на фоновое, локальное, региональное и глобальное Фоновое загрязнение близкое к его естественного состава. Локальным считается загрязнение почвы вблизи одного или нескольких источников загрязнения. Региональным загрязнения считается при переносе загрязняющих веществ до 40 км от источника загрязнения, а глобальным - при загрязнении почв нескольких регионов.

По степени загрязнения почвы делятся на сильно загрязненные, средне загрязненные, слабо загрязненные.

В сильнозагрязненных почвах количество загрязняющих веществ в несколько раз превышает ПДК. Они имеют ряд биологическую продуктивность и существенные изменения физико-химических, химических и биологических характеристик, в результате чего содержание химических веществ в выращиваемых культурах превышает норму. В средне загрязненных почвах превышение ПДК незначительное, что не приводить к заметным изменениям его свойств.

В слабозагрязненных почвах содержание химических веществ не превышает ПДК, но превышает фон.

Загрязнение земель зависит в основном от класса опасных веществ, которые попадают в почву:

1 класс - высокоопасные вещества;

2 класс - умеренно опасные вещества;

3 класс - малоопасные вещества.

Класс опасности веществ устанавливается по показателям .

Таблица 1 - Показатели и классы опасных веществ

Загрязнение почв радиоактивными веществами обусловлено главным образом испытанием в атмосфере атомного и ядерного оружия, которое не прекращено отдельными государствами и на сегодня. Выпадая с радиоактивными осадками, 90 Sr, 137 Cs и другие нуклиды, поступая в растения, а затем в продукты питания и организм человека, вызывают радиоактивное заражение, обусловленное внутренним облучением .

Радионуклиды - химические элементы, способные к самопроизвольному распаду с образованием новых элементов, а также образованные изотопы любых химических элементов. Химические элементы, способные к самопроизвольному распаду называются радиоактивными. Наиболее употребляемый синоним ионизирующей радиации - радиоактивное излучение.

Радиоактивное излучение - естественный фактор в биосфере для всех живых организмов, да и сами живые организмы обладают определенной радиоактивностью. Среди биосферных объектов почвы обладают наиболее высокой естественной степенью радиоактивности.

Однако, в 20 веке человечество столкнулось с радиоактивностью запредельно превышающей естественную, а следовательно, и биологически аномальную. Первыми пострадавшими от избыточных доз радиации были великие ученые, открывшие радиоактивные элементы (радий, полоний) супруги Мария Склодовская-Кюри и Пьер Кюри. А затем: Хиросима и Нагасаки, испытания атомного и ядерного оружия, многие катастрофы, в том числе Чернобыльская и т.д. Огромные пространства были загрязнены долгоживущими радионуклидами - 137 Cs и 90 Sr. Согласно действующему законодательству, одним из критериев отнесения территорий к зоне радиоактивного загрязнения является превышение плотности загрязнения 137 Cs величины 37 кБк/м 2 . Такое превышение было установлено на 46,5 тыс. км 2 во всех областях Беларуси.

Уровни загрязнения территории 90 Sr выше 5,5 кБк/м 2 (законодательно установленный критерий) были выявлены на площади 21,1 тыс. км 2 в Гомельской и Могилевской областях, что составляло 10 % от территории страны. Загрязнение изотопами 238,239+240 Pu с плотностью более 0,37 кБк/м 2 (законодательно установленный критерий) охватывало около 4,0 тыс. км 2 , или около 2 % территории, в основном в Гомельской области (Брагинский, Наровлянский, Хойникский, Речицкий, Добрушский и Лоевский районы) и Чериковском районе Могилевской области.

Природные процессы распада радионуклидов за 25 лет, прошедших после чернобыльской катастрофы, внесли коррективы в структуру их распределения по регионам Беларуси. За этот период уровни и площади загрязнения сократились. С 1986 по 2010 г. площадь территории, загрязненной 137 Cs с плотностью выше 37 кБк/м 2 (выше 1 Ки/км 2), уменьшилась с 46,5 до 30,1 тыс. км 2 (с 23 % до 14,5 %). По загрязнению 90 Sr с плотностью 5,5 кБк/м 2 (0,15 Ки/км 2) этот показатель снизился - с 21,1 до 11,8 тыс. км 2 (с 10 % до 5,6 %) (Таблица 2).

загрязнение техногенный земля радионуклид

Таблица 2 - Загрязнение территории Республики Беларусь 137Cs в результате катастрофы на Чернобыльской АЭС (на 1.01.2012 г.)

Площадь сельскохозяйственных земель, тыс. гa

Загрязненных 137 Cs

в том числе с плотностью загрязнения, кБк/м 2 (Ки/км 2)

37+185 (1.0+4.9)

185+370 (5.0+9.9)

370+555 (10.0+14.9)

555+1110 (15.0+29.9)

1110+1480 (30.0+39.9)

Брестская

Витебская

Гомельская

Гродненская

Могилевская

Республика Беларусь

Наиболее значимыми объектами биосферы, определяющими биологические функции всего живого, являются почвы.

Радиоактивность почв обусловлена содержанием в них радионуклидов. Различают естественную и искусственную радиоактивность.

Естественная радиоактивность почв вызывается естественными радиоактивными изотопами, которые всегда в тех или иных количествах присутствуют в почвах и почвообразующих породах.

Естественные радионуклиды подразделяют на 3 группы. Первая группа включает радиоактивные элементы - элементы, все изотопы которых радиоактивны: уран (238 U, 235 U), торий (232 Th), радий (226 Ra) и радон (222 Rn, 220 Rn). Во вторую группу входят изотопы «обычных» элементов, обладающие радиоактивными свойствами: калий (40 К), рубидий (87 Rb), кальций (48 Са), цирконий (96 Zr) и др. Третью группу составляют радиоактивные изотопы, образующиеся в атмосфере под действием космических лучей: тритий (3 Н), бериллий (7 Ве, 10 Ве) и углерод (14 С).

По способу и времени образования радионуклиды подразделяют на: первичные - образовавшиеся одновременно с образованием планеты (40 К, 48 Сa, 238 U); вторичные продукты распада первичных радионуклидов (всего 45 - 232 Th, 235 U, 220 Rn, 222 Rn, 226 Ra и др.); индуцированные - образовавшиеся под действием космических лучей и вторичных нейтронов (14 С, 3 Н, 24 Na). Всего насчитывают более 300 природных радионуклидов . Валовое содержание естественных радиоактивных изотопов в основном зависит от почвообразующих пород. Почвы, сформировавшиеся на продуктах выветривания кислых пород, содержат радиоактивных изотопов 24 больше, чем образовавшиеся на основных и ультраосновных породах; тяжелые почвы содержат их больше, чем легкие.

Естественные радиоактивные элементы распределяются по профилю почв обычно относительно равномерно, но в некоторых случаях они аккумулируются в иллювиальных и глеевых горизонтах. В почвах и породах присутствуют преимущественно в прочносвязанной форме.

Искусственная радиоактивность почв обусловлена поступлением в почву радиоактивных изотопов, образующихся в результате атомных и термоядерных взрывов, в виде отходов атомной промышленности или в результате аварий на атомных предприятиях. Образование изотопов в почвах может происходить вследствие наведенной радиации. Наиболее часто искусственное радиоактивное загрязнение почв вызывают изотопы 235 U, 238 U, 239 Pu, 129 I, 131 I, 144 Ce, 140 Ba, 106 Ru, 90 Sr, 137 Cs и др.

Экологические последствия радиоактивного загрязнения почв заключаются в следующем. Включаясь в биологический круговорот, радионуклиды через растительную и животную пищу попадают в организм человека и, накапливаясь в нем, вызывают радиоактивное облучение. Радионуклиды, подобно многим другим загрязняющим веществам, постепенно концентрируются в пищевых цепях.

В экологическом отношении наибольшую опасность представляют 90 Sr и 137 Cs. Это обусловлено длительным периодом полураспада (28 лет 90 Sr и 33 года 137 Cs), высокой энергией излучения и способностью легко включаться в биологический круговорот, в цепи питания. Стронций по химическим свойствам близок к кальцию и входит в состав костных тканей, а цезий близок к калию и включается во многие реакции живых организмов.

Искусственные радионуклиды закрепляются в основном (до 80-90%) в верхнем слое почвы: на целине - слое 0-10 см, на пашне - в пахотном горизонте. Наибольшей сорбцией обладают почвы с высоким содержанием гумуса, тяжелым гранулометрическим составом, богатые монтмориллонитом и гидрослюдами, с непромывным типом водного режима. В таких почвах радионуклиды способны к миграции в незначительной степени. По степени подвижности в почвах радионуклиды образуют ряд 90 Sr > 106 Ru > 137 Ce > 129 J > 239 Pu. Скорость естественного самоочищения почв от радиоизотопов зависит от скоростей их радиоактивного распада, вертикальной и горизонтальной миграции. Период полураспада радиоактивного изотопа - время, необходимое для распада половины количества его атомов.

Таблица 3 - Характеристика радиоактивных веществ

Керма-постоянная

Гамма-постоянная

Дозовый коэффициент облучения

Период полураспада

1,28-10 6 лет

Марганец

Стронций

Прометий

138,4 суток

Плутоний

2.44 -104 лет

Радиоактивность в живых организмах обладает накопительным эффектом. Для человека величина ЛД 50 (летальная доза, облучение в которой вызывает 50 % гибель биообъектов) составляет 2,5-3,5 Гр.

Доза 0,25 Гр считается условно нормальной для внешнего облучения. 0,75 Гр облучение всего тела человека или 2,5 Гр облучение щитовидной железы от радиоактивного йода 131 I требуют мер по радиационной защите населения.

Особенность радиоактивного загрязнения почвенного покрова заключается в том, что количество радиоактивных примесей чрезвычайно мало, и они не вызывают изменений основных свойств почвы - рН, соотношения элементов минерального питания, уровня плодородия.

Поэтому, в первую очередь, следует лимитировать (нормировать) концентрации радиоактивных веществ, поступающих из почвы в продукцию растениеводства. Поскольку в основном радионуклиды являются тяжелыми металлами, то основные проблемы и пути нормирования, санации и охраны почв от загрязнения радионуклидами и тяжелыми металлами в большей степени сходны и зачастую могут рассматриваться вместе.

Таким образом, радиоактивность почв обусловлена содержанием в них радионуклидов. Естественная радиоактивность почв вызвана естественными радиоактивными изотопами, которые всегда в тех или иных количествах присутствуют в почвах и почвообразующих породах. Искусственная радиоактивность почв обусловлена поступлением в почву радиоактивных изотопов, образующихся в результате атомных и термоядерных взрывов, в виде отходов атомной промышленности или в результате аварий на атомных предприятиях.

Наиболее часто искусственное радиоактивное загрязнение почв вызывают изотопы 235 U, 238 U, 239 Pu, 129 I, 131 I, 144 Ce, 140 Ba, 106 Ru, 90 Sr, 137 Cs и т. д. Интенсивность радиоактивного загрязнения на конкретной территории определяется двумя факторами:

а) концентрацией радиоактивных элементов и изотопов в почвах;

б) природой самих элементов и изотопов, которая в первую очередь детерминируется периодом полураспада.

В экологическом отношении наибольшую опасность представляют 90 Sr и 137 Cs. Они прочно закрепляются в почвах, характеризуются длительным периодом полураспада (90 Sr - 28 лет и 137 Cs - 33 года) и легко включаются в биологический круговорот как элементы, близкие к Ca и K. Накапливаясь в организме они являются постоянными источниками внутреннего облучения.

В соответствии с ГОСТом токсические химические элементы разделены по классам гигиенической опасности. По почвам они таковы:

а) I класс: мышьяк (As), бериллий (Be), ртуть (Hg), селен (Sn), кадмий (Cd), свинец (Pb), цинк (Zn), фтор (F);

б) II класс: хром (Cr), кобальт (Co), бор (B), молибден (Mn), никель (Ni), медь (Cu), сурьма (Sb);

в) III класс: барий (Ba), ванадий (V), вольфрам (W), марганец (Mn), стронций (Sr).

Тяжелые металлы уже сейчас занимают второе место по степени опасности, уступая пестицидам и значительно опережая такие широко известные загрязнители, как двуокись углерода и серы. В перспективе они могут стать более опасными, чем отходы атомных электростанций и твердые отходы. Загрязнение тяжёлыми металлами связано с их широким использованием в промышленном производстве. В связи с несовершенными системами очистки тяжёлые металлы попадают в окружающую среду, в том числе и в почву, загрязняя и отравляя ее. Тяжёлые металлы относятся к особым загрязняющим веществам, наблюдения за которыми обязательны во всех средах.

Почва является основной средой, в которую попадают тяжёлые металлы, в том числе из атмосферы и водной среды. Она же служит источником вторичного загрязнения приземного воздуха и вод, попадающих из нее в Мировой океан. Из почвы тяжёлые металлы усваиваются растениями, которые затем попадают в пищу.

Термин «тяжелые металлы», характеризующий широкую группу загрязняющих веществ, получил в последнее время значительное распространение. В различных научных и прикладных работах авторы по-разному трактуют значение этого понятия. В связи с этим количество элементов, относимых к группе тяжелых металлов, изменяется в широких пределах. В качестве критериев принадлежности используются многочисленные характеристики: атомная масса, плотность, токсичность, распространенность в природной среде, степень вовлеченности в природные и техногенные циклы.

В работах, посвященных проблемам загрязнения почвы и экологического мониторинга, на сегодняшний день к тяжелым металлам относят более 40 элементов периодической системы Д.И. Менделеева с атомной массой свыше 40 атомных единиц: V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Cd, Sn, Hg, Pb, Bi и др. По классификации Н. Реймерса, тяжелыми следует считать металлы с плотностью более 8 г/см 3 . При этом немаловажную роль в категорировании тяжелых металлов играют следующие условия: их высокая токсичность для живых организмов в относительно низких концентрациях, а также способность к биоаккумуляции и биомагнификации. Практически все металлы, попадающие под это определение (за исключением свинца, ртути, кадмия и висмута, биологическая роль которых на настоящий момент не ясна), активно участвуют в биологических процессах, входят в состав многих ферментов.

На поверхность почвы тяжелыми металлами поступают в различных формах. Это оксиды и различные соли металлов, как растворимые, так и практически нерастворимые в воде (сульфиды, сульфаты, арсениты и др.). В составе выбросов предприятий по переработке руды и предприятий цветной металлургии - основного источника загрязнения окружающей среды тяжёлые металлы - основная масса металлов (70-90 %) находится в форме оксидов. Попадая на поверхность почв, они могут либо накапливаться, либо рассеиваться в зависимости от характера геохимических барьеров, свойственных данной территории . Распределение тяжёлых металлов в различных объектах биосферы и источники поступления их в окружающую среду (таблица 4).

Таблица 4 - Источники поступления тяжелых металлов в окружающую cреду

Естественное загрязнение

Техногенное загрязнение

Извержение вулканов, ветровая эрозия.

Добыча и переработка мышьяк содержащих руд и минералов, пирометаллургия и получение серной кислоты, суперфосфата; сжигание, нефти, торфа, сланцев.

Выпадение с атмосферными осадками. Вулканическая деятельность.

Обогащение руд, производство серной кислоты, сжигание угля.

Сточные воды производств: металлургического, машиностроительного, текстильного, стекольного, керамического и кожевенного. Разработка борсодержащих руд.

Широко распространен в природе, составляя примерно 0,08 % земной коры.

Электростанции, работающие на угле, производство алюминия и суперфосфатных удобрений.

В элементарном состоянии в природе не встречается. В виде хромита входит в состав земной коры.

Выбросы предприятий, где добывают, получают и перерабатывают хром.

Известно более 100 кобальт-содержащих минералов.

Сжигание в процессе промышленного производства природных и топливных материалов.

Входит в состав многих минералов.

Металлургический процесс переработки и обогащения руд, фосфорные удобрения, производство цемента, выбросы ТЭС.

Входит в состав 53 минералов.

Выбросы предприятий горнорудной промышленности, цветной металлургии, машиностроительные, металлообрабатывающие, химические предприятия, транспорт, ТЭС.

Общие мировые запасы меди в рудах оценивают 465 млн т. Входит в состав минералов Самородная образуется в зоне окисления сульфидных месторождений. Вулканические и осадочные породы.

Предприятия цветной металлургии, транспорт, удобрения и пестициды, процессы сварки, гальванизации, сжигание углеводородных топлив.

Относиться к группе рассеянных элементов. Широко распространен во всех геосферах. Входит в состав 64 минералов.

Высокотемпературные технологические процессы. Потери при транспортировке, сжигание каменного угля.

Ежегодно с атмосферными осадками на 1 км 2 поверхности Земли выпадает 72 кг цинка, что в 3 раза больше, чем свинца и в 12 раз больше, чем меди.

Относится к редким рассеянным элементам: содержится в виде изоморфной примеси во многих минералах.

Локальное загрязнение - выбросы промышленных комплексов, загрязнение различной степени мощности это тепловые энергетические установки, моторы.

Рассеянный элемент, концентрируется в сульфидных рудах. Небольшое количество встречается в самородном виде.

Процесс пирометаллургического получения металла, а также все процессы, в которых используется ртуть. Сжигание любого органического топлива (нефть, уголь, торф, газ, древесина) металлургические производства, термические процессы с нерудными материалами.

Содержится в земной коре, входит в состав минералов. В окружающую среду поступает в виде силикатной пыли почвы, вулканического дыма, испарений лесов, морских солевых аэрозолей и метеоритной пыли.

Выбросы продуктов, образующихся при высокотемпературных технологических процессах, выхлопные газы, сточные воды, добыча и переработка металла, транспортировка, истирание и рассеивание.

Самыми мощными поставщиками отходов, обогащенных металлами, являются предприятия по выплавке цветных металлов (алюминиевые, глиноземные, медно-цинковые, свинцово-плавильные, никелевые, титаномагниевые, ртутные), а также по переработке цветных металлов (радиотехнические, электротехнические, приборостроительные, гальванические и пр.). В пыли металлургических производств, заводов по переработке руд концентрация Pb, Zn, Bi, Sn может быть повышена по сравнению с литосферой на несколько порядков (до 10-12), концентрация Cd, V, Sb - в десятки тысяч раз, Cd, Mo, Pb, Sn, Zn, Bi, Ag - в сотни раз. Отходы предприятий цветной металлургии, заводов лакокрасочной промышленности и железобетонных конструкций обогащены ртутью. В пыли машиностроительных заводов повышена концентрация W, Cd, Pb (Таблица 5).

Таблица 5 - Основные техногенные источники тяжелых металлов

Под влиянием обогащенных металлами выбросов формируются ареалы загрязнения ландшафта преимущественно на региональном и локальном уровнях. С выхлопными газами автомобилей в окружающую среду выбрасывается значительное количество Pb, которое превышает его поступление с отходами металлургических предприятий.

Почвы мира часто обогащены не только тяжелыми, но и другими веществами природного и антропогенного генезиса. Выявление «насыщение» почв металлами и элементами Э.А. Новиков объяснил следствием взаимодействия человека и природы (таблица 6).

Основным элементом-загрязнителем пригородных почв Беларуси является свинец. Повышенное его содержание наблюдается в пригородных зонах Минска, Гомеля, Могилева. Загрязнение почв свинцом на уровне ПДК (32 мг/кг) и выше отмечено локально, небольшими участками, по направлению господствующих ветров.

Таблица 6 - Сочетание взаимодействия человека и природы

Как видно из таблицы, большинство металлов, в том числе и тяжелые, человек рассеивает. Закономерности распределения рассеянных человеком элементов в педосфере представляют важное и самостоятельное направление в исследовании почв. А.П Виноградов, Р. Митчелла, Д. Свайна, Х. Боуэна, Р. Брукса, В.В Добровольского. Результатом их исследований явилось выявление средних значений концентраций элементов в почвах отдельных континентов стран, регионов и в целом по миру (таблица 7).

На отдельных полях Минской овощной фабрики, где на протяжении ряда лет применялись в качестве удобрений твердые бытовые отходы, содержание свинца достигает 40-57 мг/кг почвы. На этих же полях содержание подвижных форм цинка и меди в почве составляет соответственно 65 и 15 мг/кг при предельном уровне для цинка 23 мг/кг и меди 5 мг/кг.

Вдоль автомагистралей почва сильно загрязнена свинцом и в меньшей степени кадмием. Загрязнение почв придорожных полос автомобильных дорог межгосударственного (Брест - Москва, Санкт-Петербург - Одесса), республиканского (Минск - Слуцк, Минск - Логойск) и местного (Заславль - Дзержинск, Жабинка - Б. Мотыкалы) значения наблюдается на расстоянии до 25-50 м от полотна дороги в зависимости от рельефа местности и наличия лесозащитных полос. Максимальное содержание свинца в почве отмечено на расстоянии 5-10 м от автотрассы. Оно выше фонового значения в среднем в 2-2,3 раза, но несколько ниже или близко к ПДК. Содержание кадмия в почвах Беларуси находится на уровне фона (до 0,5 мг/кг). Превышение фона до 2,5 раза отмечено локально на расстоянии до 3-5 км от крупных городов и достигает 1,0-1,2 мг почвы при ПДК 3 мг/кг для стран Западной Европы (ПДК кадмия для почв Беларуси не разработана). Площадь почв в Беларуси, загрязненных от различных источников свинцом в настоящее время ориентировочно составляет 100 тыс. га, кадмием - 45 тыс. га .

Таблица 7 - Сочетание взаимодействия человека и природы

Элементы

Средние значение (Почвы США, X. Шаклетт, Дж. Борнгсн, 1984)

Средние значение (Почвы мира, А. П. Виноградов, 1957)

Элементы

Средние значение (Почвы США, Дж. Борнген, 1984)

Средние значение (Почвы мира, А.П. Виноградов, 1957)

В настоящее время производится агрохимическое картирование на содержание меди в почвах Беларуси, и уже установлено, что в республике 260,3 тыс. га сельскохозяйственных земель загрязнены медью (Таблица 8).

Таблица 8 - Сельскохозяйственные земли Беларуси, загрязненные медью (тыс. га)

Среднее содержание подвижной меди в почвах пашни невелико и составляет 2,1 мг/кг, улучшенных сенокосных и пастбищных земель - 2,4 мг/кг. В целом по республике 34 % пахотных и 36 % сенокосных и пастбищных земель имеют очень низкую обеспеченность медью (менее 1,5 мг/кг) и остро нуждаются в применении медьсодержащих удобрений. На почвах с избыточным содержанием меди (3,3 % сельскохозяйственных земель) использование любых форм удобрений, содержащих медь, должно быть исключено.

CОДЕРЖАНИЕ

Введение

1. Почвенный покров и его использование

2. Эрозия почв (водная и ветреная) и методы борьбы с нею

3. Промышленное загрязнение почвы

3.1 Кислотные дожди

3.2 Тяжелые металлы

3.3 Свинцовая интоксикация

4. Гигиена почвы. Обезвреживание отходов

4.1 Роль почвы в обмене веществ

4.2 Экологическая взаимосвязь между почвой и водой и жид­кими отходами (сточными водами)

4.3 Пределы нагрузки почвы твердыми отходами (бытовой и уличный мусор, пром. отходы, сухой ил после осаждения сточных вод, радиоакт. вещества)

4.4 Роль почвы в распространении различных заболеваний

4.5 Вредное действие основных типов загрязнителей (твер­дых и жидких отходов), приводящих к деградации почвы

4.5.1 Обезвреживание жидких отходов в почве

4.5.2.1 Обезвреживание в почве твердых отходов

4.5.2.2 Сбор и вывоз мусора

4.5.3 Окончательное удаление и обезвреживание

4.6 Удаление радиоактивных отходов

Заключение

Список использованных источников

Введение.

Определенная часть почв, как в России, так и во всем мире с каждым годом выходит из сельскохозяйственного обращения в силу разных причин, подробно рассмотренных в УИР. Тысячи и более гектаров земли страдают от эрозии, кислотных дождей, неправильной обработки и токсичных отходов. Чтобы избежать этого, нужно ознакомиться с наиболее продуктивными и недорогими мелиоративными мероприятиями (Определение мелиорации см. в основной части работы), повышающими плодородие почвенного покрова, а прежде всего с самим негативным воздействием на почву, и как его избежать.

Эти исследования дают представление о вредном воздействии на почву и проводились по ряду книг, статей и научных журналов, посвященных проблемам почвы и защите окружающей среды.

Сама проблема загрязнения и деградации почв была актуальна всегда. Сейчас к сказанному можно еще добавить, что в наше время антропогенное влияние сильно сказывается на природе и только растет, а почва является для нас одним из главных источником пищи и одежды, не говоря уже о том, что мы по ней ходим и всегда будем находиться в тесном контакте с ней.

1. Почвенный покров и его использование.

Почвенный покров является важнейшим природным образова­нием. Его значение для жизни общества определяется тем, что почва является основным источником продовольствия, обеспечи­вающим 97-98% продовольственных ресурсов населения планеты. Вместе с тем, почвенный покров является местом деятельности че­ловека, на котором размещается промышленное и сельскохозяй­ственное производство.

Выделяя особую роль продовольствия в жизни общества, еще В. И. Ленин указывал: “Настоящие основы хозяйства - это про­довольственный фонд”.

Важнейшее свойство почвенного покрова - его плодородие, под которым понимается совокупность свойств почвы, обеспечиваю­щих урожай сельскохозяйственных культур. Естественное плодо­родие почвы регулируется запасом питательных веществ в почве и ее водным, воздушным и тепловым режимами. Велика роль поч­венного покрова в продуктивности наземных экологических систем, так как почва питает сухопутные растения водой и многими сое­динениями и является важнейшим компонентом фотосинтетической деятельности растений. Плодородие почвы зависит и от аккумули­рованной в ней величины солнечной энергии. Живые организмы, растения и животные, населяющие Землю, фиксируют солнечную энергию в форме фито- или зоомассы. Продуктивность наземных экологических систем зависит от теплового и водного баланса зем­ной поверхности, которым определяется многообразие форм обмена материей и веществом в пределах географической оболочки пла­неты.

Анализируя значение земли для общественного производства, К. Маркс выделял два понятия: земля-материя и земля-капи­тал. Под первым из них следует понимать землю, возникшую в про­цессе ее эволюционного развития помимо воли и сознания людей и являющуюся местом поселения человека и источником его пиши . С того момента, когда земля в процессе развития человеческого общества становится средством производства, она выступает в но­вом качестве-капитала, без которого немыслим процесс труда, “… потому что она дает рабочему… место, на котором он стоит..., а его процессу-сферу действия...”. Именно по этой причине зем­ля является универсальным фактором любой человеческой дея­тельности.

Роль и место земли неодинаковы в различных сферах мате­риального производства, прежде всего в промышленности и сель­ском хозяйстве. В обрабатывающей промышленности, в строитель­стве, на транспорте земля является местом, где совершаются про­цессы труда независимо от естественного плодородия почвы. В ином качестве выступает земля в сельском хозяйстве. Под воз­действием человеческого труда естественное плодородие из потен­циального превращается в экономическое. Специфика использова­ния земельных ресурсов в сельском хозяйстве приводит к тому, что они выступают в двух различных качествах, как предмет труда и как средство производства. К. Маркс отмечал: “Одним только новым вложением капиталов в участки земли… люди увеличивали землю-капитал без всякого увеличения материи земли, т. е. про­странства земли”.

Земля в сельском хозяйстве выступает в качестве производи­тельной силы благодаря своему естественному плодородию, кото­рое не остается постоянным. При рациональном использовании земли такое плодородие может быть повышено за счет улучшения ее водного, воздушного и теплового режима посредством проведе­ния мелиоративных мероприятии и увеличения содержания в почве питательных веществ. Напротив, при нерациональном использова­нии земельных ресурсов их плодородие падает, вследствие чего происходит снижение урожайности сельскохозяйственных культур. В некоторых местах возделывание культур становится вовсе невоз­можным, особенно на засоленных и эродированных почвах.

При низком уровне развития производительных сил общества расширение производства продуктов питания происходит за счет вовлечения в сельское хозяйство новых земель, что соответствует экстенсивному развитию сельского хозяйства. Этому способствуют два условия: наличие свободных земель и возможность ведения хозяйства на доступном среднем уровне затрат капитала на еди­ницу площади. Такое использование земельных ресурсов и веде­ние сельского хозяйства типичны для многих развивающихся стран современного мира.

В эпоху НТР произошло резкое разграничение системы ведения земледелия в промышленно развитых и развивающихся странах. Для первых характерна интенсификация земледелия с использо­ванием достижений НТР, при которой сельское хозяйство разви­вается не за счет увеличения площади обрабатываемой земли, а благодаря увеличению размеров капитала, вкладываемого в зем­лю. Известная ограниченность земельных ресурсов для большин­ства промышленно развитых капиталистических стран, увеличение спроса на продукты земледелия во всем мире в связи с высокими темпами роста населения, более высокая культура земледелия способствовали переводу сельского хозяйства этих стран еще в 50-е годы на путь интенсивного развития. Ускорение процесса интенсификации сельского хозяйства в промышленно развитых капита­листических странах связано не только с достижениями НТР, но главным образом с выгодностью вложения капитала в сельское хозяйство, что сконцентрировало сельскохозяйственное производ­ство в руках крупных землевладельцев и разорило мелких фер­меров.

Иными путями развивалось сельское хозяйство в развиваю­щихся странах. Среди острых естественно-ресурсных проблем этих стран можно выделить следующие: низкую культуру земледелия, вызвавшую деградацию почв (повышенную эрозию, засоление, снижение плодородия) и естественной растительности (например, тропических лесов), истощение водных ресурсов, опустынивание земель, особенно отчетливо проявившееся на африканском конти­ненте. Все эти факторы, связанные с социально-экономическими проблемами развивающихся стран, привели к хронической нехватке в этих странах продовольствия. Так, на начало 80-х годов по обес­печенности на одного человека зерном (222 кг) и мясом (14 кг) развивающиеся страны уступали промышленно развитым капита­листическим странам соответственно в несколько раз. Решение продовольственной проблемы в развивающихся странах немыслимо без крупных социально-экономических преобразований.

В нашей стране основу земельных отношений составляет об­щегосударственная (общенародная) собственность на землю, воз­никшая в результате национализации всей земли. Аграрные отношения стро­ятся на основе планов, по которым должно развиваться сельское хозяйство в будущем, при финансово-кредитной помощи государ­ства и поставок необходимого количества машин и удобрений. Оплата работников сельского хозяйства по количеству и качеству труда стимулирует постоянное повышение их жизненного уровня.

Использование земельного фонда как единого целого осущест­вляется на основах долговременных государственных планов. При­мером таких планов явилось освоение целинных и залежных зе­мель на востоке страны (середина 50-х годов), благодаря которому стало возможным за короткий срок ввести в состав пахотных зе­мель более 41 млн. га новых площадей. Еще пример - комплекс мероприятий, связанных с выполнением Продовольственной про­граммы, предусматривающей ускорение развития сельскохозяйст­венного производства на основе повышения культуры земледелия, широкого проведения мелиоративных мероприятий, а также осу­ществления широкой программы социально-экономического пере­устройства сельскохозяйственных районов.

Земельные ресурсы мира в целом позволяют обеспечить продук­тами питания большее количество людей, чем имеется в настоя­щее время и чем оно будет в ближайшем будущем. Вместе с тем, в связи с ростом населения, особенно в развивающихся странах, количество пашни на душу населения сокращается.

В земледельческих районах в направлении с севера на юг на­блюдается закономерное уменьшение площади слабоокультурен­ных угодий и возрастание площади пашни, которая достигает максимума в лесостепной и степной зонах. Если в северных областях Нечерноземной зоны РСФСР площадь пашни составляет 5-6% общей площади, то в лесостепной и степной зонах площадь пашни увеличивается более чем в 10 раз, достигая 60-70%. Севернее и южнее этих зон земледельческая территория резко сокра­щается. На севере граница устойчивого земледелия определяется суммой положительных температур 1000° за вегетационный период, на юге - годовой суммой осадков в 200-300 мм. Исключение со­ставляют лучше увлажненные предгорные и горные районы юга Европейской части страны и Средней Азии, где земледельческая освоенность территории составляет 20%. На севере Русской рав­нины в лесотундровой и тундровой зонах площадь пашни состав­ляет лишь 75 тыс. га (менее 0,1% территории).

Для ускорения развития сельского хозяйства страны требуется осуществление ряда крупномасштабных мероприятий:

Внедрение научно обоснованной системы земледелия для каж­дой природной зоны и ее отдельных регионов;

Осуществление широкой программы мелиорации земель в раз­личных природных зонах;

Ликвидация процессов вторичного засоления и заболачивания мелиоративных массивов;

Применение комплексов мероприятий по борьбе с водной и вет­ровой эрозией на площадях, измеряемых миллионами гектаров;

Создание сети культурных пастбищ в различных природных зо­нах с применением их орошения, обводнения и внесения удоб­рений;

Проведение широкого комплекса мероприятий по окультуриванию освоенных почв с созданием глубокого оструктуренного гори­зонта;

Модернизация машинно-тракторного парка и почвообрабаты­вающих орудий;

Применение полноценной дозы удобрений под все вилы сель­скохозяйственных культур, в том числе малорастворимых в защит­ной оболочке;

Осуществление комплекса мероприятий по социальному пере­устройству земледельческих территорий (строительство дорог, жи­лищ, складов, школ, больниц и т. д.);

Всемерное сохранение существующего земельного фонда. Эта программа может быть рассчитана на продолжительное время.

Нечерноземная зона РСФСР простирается от Прибалтийских равнин на западе до Уральского хребта на востоке, от побережья Северного Ледовитого океана на севере до границы лесостепи на юге. Ее площадь составляет около 2,8 км2. Нечерноземье отличается высокой концентрацией населения. Здесь проживает более 60 млн. человек (около 44% населения РСФСР), в том числе око­ло 73% в городах. Эта зона насчитывает 47 млн. га сельскохозяйственных угодий, из них 32 млн. га - пашни. Нечерноземная зона отличается развитым сельским хозяйством, на долю которого при­ходится до 30% сельскохозяйственной продукции РСФСР, в том числе почти все льноволокно, до 20% зерна, более 50 - картофеля, около 40 - молока и яиц, 43 - овощей, 30% - мяса.

Важнейшей особенностью Нечерноземной зоны является нали­чие большой площади естественных кормовых угодий. На каждый гектар пашни здесь приходится от 1 до 3 га кормовых сенокосов и пастбищ. Природно-климатические условия почти повсеместно благоприятствуют развитию сельского хозяйства мясомолочной специализации. Для интенсификации сельского хозяйства предпо­лагается на болотах и заболоченных землях провести мелиора­тивные мероприятия и химизацию сельскохозяйственных угодий.

2. Эрозия почв (водная и ветреная) и методы борьбы с ней.

Широкое использование земель, особенно возросшее в эпоху НТР, привело к увеличению распространения водной и ветровой эрозий (дефляции). Под их воздействием происходит вынос (водой либо ветром) почвенных агрегатов из верхнего, наиболее цен­ного слоя почвы, который приводит к снижению ее плодородия. Водная и ветровая эрозии, вызывая истощение почвенных ресур­сов, являются опасным экологическим фактором.

Общая площадь земель, подверженных водной и ветровой эро­зии, измеряется многими миллионами гектаров. По имеющимся оценкам, водной эрозии подвержено 31% суши, а ветровой-34%. Косвенным свидетельством возросших масштабов водной и вет­ровой эрозии в эпоху НТР является увеличение твердого стока ре­ками в океан, который ныне оценивается в 60 млрд. т, хотя 30 лет тому назад эта величина была почти в 2 раза меньше.

Общее сельскохозяйственное использование земель (включая пастбища и сенокосы) составляет около 1 /3 суши. В результате водной и ветровой эрозии во всем мире пострадало около 430 млн. га земли, а при сохранении нынешних масштабов эрозии к концу века эта величина может удвоиться.

Ветровой эрозии наиболее подвержены частицы почвы 0,5- 0,1 мм и менее, которые при скоростях ветра у поверхности почвы 3,8-6,6 м/с приходят в движение и перемещаются на большие рас­стояния. Мелкие почвенные частицы (<,0,1 мм) способны преодо­левать расстояние в сотни (иногда тысячи километров). На осно­вании аэрокосмических снимков выявлено, что пыльные бури в Са­харе прослеживались вплоть до Северной Америки.

Категория частиц 0,5-0,1 мм является одной из агрономически ценных, поэтому ветровая эрозия снижает почвенное плодородие. Не менее деятельным процессом является водная эрозия, так как при смыве водой возрастает размер вымываемых почвенных частиц.

Смыв почвы зависит от типа почвы, ее физико-механического состава, величины поверхностного стока и состояния поверхности почвы (агрофон). Показатели смыва почвы изменяются для раз­личных пахотных угодий в весьма широких пределах. Для южных черноземов показатели смыва почв (т/га) меняются от 21,7 (зяблевая вспашка вдоль склона), 14,9 (то же поперек склона) до 0,2 (многолетняя залежь). Интенсивность эрозии в современную эпоху порождена прямыми либо косвенными последствиями антропогенного происхождения. К первым следует отнести широкую распашку земель в эрозионно-опасных районах, особенно в аридной либо семиаридной зонах. Такое явление типично для большинства раз­вивающихся стран.

Однако интенсивность эрозии возросла и в развитых странах, в том числе во Франции, Италии, ФРГ, Греции. Эрозионно-опасными считаются некоторые районы Нечерноземной зоны РСФСР, поскольку серые лесные почвы очень подвержены размыву. Эрозия имеет место и на переувлажненных орошаемых массивах.

В трудном положении оказываются районы, в которых проис­ходит одновременное проявление водной и ветровой эрозии. В нашей стране к таким относятся лесостепные и частично степные районы Центральной черноземной области, Поволжья, Зауралья, Западной и Восточной Сибири с интенсивным сельскохозяйственным использованием. Водная и ветровая эрозии развиваются в зоне недостаточного увлажнения с чередова­нием влажных и засухоустойчивых лет (либо сезонов) по таким схемам: смыв - осушение почвы - выдувание, выдувание - переувлажнение почвы - смыв. Отмечается, что она может прояв­ляться на участках со сложным рельефом неодинаково: на склонах северных экспозиций преобладает водная эрозия, на южных с ветроударным эффектом - ветровая. Одновременное развитие водной и ветровой эрозий может вызывать особенно большие нарушения почвенного покрова.

Ветровая эрозия возникает в степных районах с большими площадями пашни при скоростях ветра 10-15 м/с. (Поволжье, Северный Кавказ, юг Западной Сибири). Наибольший ущерб сельскому хо­зяйству наносят пыльные бури (наблюдающиеся ранней весной и летом), которые приводят к уничтожению посевов, снижению почвенного плодородия, загрязнению атмосферы, занесению полос и мелиоративных систем. Граница пыльных бурь проходит южнее линии Балта - Кременчуг - Полтава - Харьков - Балашов - Куйбышев - Уфа - Новотроицк.

Почвозащитная система земледелия, разработанная в Казах­стане, нашла широкое распространение. Ее основой является пе­реход от отвальной обработки почвы с помощью плуга к безотвальной с применением орудий плоскорезного типа, сохраняющих стерню и растительные остатки на поверхности почвы, а на почвах легкого механического состава - введение почвозащитных севооборотов с полосным размещением однолетних культур и многолет­них трав. Благодаря почвозащитной системе земледелия обеспечивается не только защита почв от ветровой эрозии, но и более эф­фективное использование атмосферных осадков. При плоскорезной обработке почва промерзает на меньшую глубину и весенний поверхностный сток используется для увлажнения поверхностных горизонтов почвы, в результате чего снижается губительное воз­действие засух па урожай зерновых культур в самые засушливые годы. Эрозия почвы может причинять как прямой ущерб - за счет уменьшения плодородия почвы, так и косвенный - за счет пере­вода одних ценных пахотных угодий в другие, менее ценные (например, лесные полосы либо луга). Только для агролесомелиоративных мероприятий защиты почв от эрозии, в которой нуждаются многие миллионы гектаров пашни, необходимо под лесопосадки использовать около 2,6% этой площади.

Для защиты почв от эрозии в настоящее время используется система научно-организационных, агролесомелиоративных и гид­ротехнических мероприятий. Основные виды борьбы с водной эрозией заключаются в макси­мальном снижении величины поверхностного стока и перевода его в подземный за счет почвозащитных севооборотов при соотноше­ние посевов многолетних трав и однолетних культур 1:2, глубо­ком поперечном бороздовании склонов, лунковании почвы, внедре­нии лесонасаждений. Гидротехнические меры борьбы с водной эро­зией включают в себя строительство прудов и водоемов для умень­шения величины талого стока. В зависимости от степени смытости почвы все сельскохозяйственные земли разделяются на девять ка­тегорий. К первой из них отнесены земли, не подверженные эро­зии, к девятой - непригодные земли для земледелия. Для каждой из категорий земель (кроме девятой) рекомендована своя противоэрозионная система земледелия.

3. Промышленное загрязнение почвы.

3.1. Кислотные дожди

Термином «кислотные дожди» называют все виды метеорологических осадков - дождь, снег, град, туман, дождь со снегом, - рН которых меньше, чем среднее значение рН дождевой воды (средний рН для дождевой воды равняется 5.6). Выделяющиеся в процессе человеческой деятельности двуокись серы (SO2) и окислы азота (NОx) трансформируются в атмосфере земли в кислотообразующие частицы . Эти частицы вступают в реакцию с водой атмосферы, превращая ее в растворы кислот, которые и понижают рН дождевой воды. Впервые термин «кислотный дождь» был введен в 1872 году английским исследователем Ангусом Смитом. Его внимание привлек викторианский смог в Манчестере. И хотя ученые того времени отвергли теорию о существовании кислотных дождей, сегодня уже никто не сомневается, что кислотные дожди являются одной из причин гибели жизни в водоемах, лесов, урожаев, и растительности. Кроме того, кислотные дожди разрушают здания и памятники культуры, трубопроводы, приводят в негодность автомобили, понижают плодородие почв и могут приводить к просачиванию токсичных металлов в водоносные слои почвы.

Вода обычного дождя тоже представляет собой слабокислый раствор. Это происходит вследствие того, что природные вещества атмосферы, такие как двуокись углерода (СО2), вступают в реакцию с дождевой водой. При этом образуется слабая угольная кислота (CO2 + H2 O -> H2 CO3). Тогда как в идеале рН дождевой воды равняется 5.6-5.7, в реальной жизни показатель кислотности (рН) дождевой воды в одной местности может отличаться от показателя кислотности дождевой воды в другой местности. Это, прежде всего, зависит от состава газов, содержащихся в атмосфере той или иной местности, таких как оксид серы и оксиды азота.

В 1883 году шведский ученый Сванте Аррениус ввел в обращение два термина - кислота и основание. Он назвал кислотами вещества, которые при растворении в воде образуют свободные положительно заряженные ионы водорода (Н+). Основаниями он назвал вещества, которые при растворении в воде образуют свободные отрицательно заряженные гидроксид-ионы (ОН-). Термин рН используют в качестве показателя кислотности воды. «Термин рН значит в переводе с английского „показатель степени концентрации ионов водорода“.

Значение рН измеряется на шкале от 0 до 14. В воде и водных растворах присутствуют как ионы водорода(Н+), так и гидроксид-ионы (ОН-). Когда концентрация ионов водорода (Н+) в воде или растворе равна концентрации гидроксид-ионов (ОН-) в том же растворе, то такой раствор является нейтральным. Значение рН нейтрального раствора равняются 7 (на шкале от 0 до 14). Как вы уже знаете, при растворении кислот в воде повышается концентрация свободных ионов водорода (Н+). Они то и повышают кислотность воды или, иными словами, рН воды. При этом, с повышением концентрации ионов водорода (Н+) понижается концентрация гидроксид-ионов (ОН-). Те растворы, значение рН которых на приведенной шкале находится в пределах от 0 до <7, называются кислыми. Когда в воду попадают щелочи, то в воде повышается концентрация гидроксид-ионов (ОН-). При этом в растворе понижается концентрация ионов водорода (Н+). Растворы, значение рН которых находится в пределах от >7 до 14, называются щелочными.

Следует обратить внимание еще на одну особенность шкалы рН. Каждая последующая ступенька на шкале рН говорит о десятикратном уменьшении концентрации ионов водорода (Н+) (и, соответственно, кислотности) в растворе и увеличении концентрации гидроксид-ионов (ОН-). Например, кислотность вещества со значением рН4 в десять раз выше кислотности вещества со значением рН5, в сто раз выше, чем кислотность вещества со значением рН6 и в сто тысяч раз выше, чем кислотность вещества со значением рН9.

Кислотный дождь образуется в результате реакции между водой и такими загрязняющими веществами, как оксид серы (SO2) и различными оксидами азота (NOх). Эти вещества выбрасываются в атмосферу автомобильным транспортом, в результате деятельности металлургических предприятий и электростанций, а также при сжигании угля и древесины. Вступая в реакцию с водой атмосферы, они превращаются в растворы кислот - серной, сернистой, азотистой и азотной. Затем, вместе со снегом или дождем, они выпадают на землю.

Последствия выпадения кислотных дождей наблюдаются в США, Германии, Чехии, Словакии, Нидерландах, Швейцарии, Австралии, республиках бывшей Югославии и еще во многих странах земного шара.

Кислотный дождь оказывает отрицательное воздействие на водоемы - озера, реки, заливы, пруды - повышая их кислотность до такого уровня, что в них погибает флора и фауна. Водяные растения лучше всего растут в воде со значениями рН между 7 и 9.2. С увеличением кислотности (показатели рН удаляются влево от точки отсчета 7) водяные растения начинают погибать, лишая других животных водоема пищи. При кислотности рН6 погибают пресноводные креветки. Когда кислотность повышается до рН5.5, погибают донные бактерии, которые разлагают органические вещества и листья, и органический мусор начинает скапливаться на дне. Затем гибнет планктон - крошечное животное, которое составляет основу пищевой цепи водоема и питается веществами, образующимися при разложении бактериями органических веществ. Когда кислотность достигает рН 4.5, погибает вся рыба, большинство лягушек и насекомых.

По мере накопления органических веществ на дне водоемов из них начинают выщелачиваться токсичные металлы. Повышенная кислотность воды способствует более высокой растворимости таких опасных металлов, как алюминий, кадмий, ртуть и свинец из донных отложений и почв.

Эти токсичные металлы представляют опасность для здоровья человека. Люди, пьющие воду с высоким содержанием свинца или принимающие в пищу рыбу с высоким содержанием ртути, могут приобрести серьезные заболевания.

Кислотный дождь наносит вред не только водной флоре и фауне. Он также уничтожает растительность на суше. Ученые считают, что хотя до сегодняшнего дня механизм до конца еще не изучен, „сложная смесь загрязняющих веществ, включающая кислотные осадки, озон, и тяжелые металлы… в совокупности приводят к деградации лесов.

Экономические потери от кислотных дождей в США, по оценкам одного исследования, составляют ежегодно на восточном побережье 13 миллионов долларов и к концу века убытки достигнут 1.750 миллиардов долларов от потери лесов; 8.300 миллиардов долларов от потери урожаев (только в бассейне реки Огайо) и только в штате Минессота 40 миллионов долларов на медицинские расходы. Единственный способ изменить ситуацию к лучшему, по мнению многих специалистов, - это уменьшить количество вредных выбросов в атмосферу.

3.2. Тяжелые металлы

Тяжелые металлы относятся к приоритетным загрязняющим веществам, наблюдения за которыми обязательны во всех средах.

Термин тяжелые металлы , характеризующий широкую группу загрязняющих веществ, получил в последнее время значительное распространение. В различных научных и прикладных работах авторы по-разному трактуют значение этого понятия. В связи с этим количество элементов, относимых к группе тяжелых металлов, изменяется в широких пределах. В качестве критериев принадлежности используются многочисленные характеристики: атомная масса, плотность, токсичность, распространенность в природной среде, степень вовлеченности в природные и техногенные циклы. В некоторых случаях под определение тяжелых металлов попадают элементы, относящиеся к хрупким (например, висмут) или металлоидам (например, мышьяк).

В работах, посвященных проблемам загрязнения окружающей природной среды и экологического мониторинга, на сегодняшний день к тяжелым металлам относят более 40 металлов периодической системы Д.И. Менделеева с атомной массой свыше 50 атомных единиц: V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Cd, Sn, Hg, Pb, Bi и др. При этом немаловажную роль в категорировании тяжелых металлов играют следующие условия: их высокая токсичность для живых организмов в относительно низких концентрациях, а также способность к биоаккумуляции и биомагнификации. Практически все металлы, попадающие под это определение (за исключением свинца, ртути, кадмия и висмута, биологическая роль которых на настоящий момент не ясна), активно участвуют в биологических процессах, входят в состав многих ферментов. По классификации Н.Реймерса, тяжелыми следует считать металлы с плотностью более 8 г/см3. Таким образом, к тяжелым металлам относятся Pb, Cu, Zn, Ni, Cd, Co, Sb, Sn, Bi, Hg .

Формально определению тяжелые металлы соответствует большое количество элементов. Однако, по мнению исследователей, занятых практической деятельностью, связанной с организацией наблюдений за состоянием и загрязнением окружающей среды, соединения этих элементов далеко не равнозначны как загрязняющие вещества. Поэтому во многих работах происходит сужение рамок группы тяжелых металлов, в соответствии с критериями приоритетности, обусловленными направлением и спецификой работ. Так, в ставших уже классическими работах Ю.А. Израэля в перечне химических веществ, подлежащих определению в природных средах на фоновых станциях в биосферных заповедниках, в разделе тяжелые металлы поименованы Pb, Hg, Cd, As. С другой стороны, согласно решению Целевой группы по выбросам тяжелых металлов, работающей под эгидой Европейской Экономической Комиссии ООН и занимающейся сбором и анализом информации о выбросах загрязняющих веществ в европейских странах, только Zn, As, Se и Sb были отнесены к тяжелым металлам . По определению Н. Реймерса отдельно от тяжелых металлов стоят благородные и редкие металлы, соответственно, остаются только Pb, Cu, Zn, Ni, Cd, Co, Sb, Sn, Bi, Hg . В прикладных работах к числу тяжелых металлов чаще всего добавляют Pt, Ag, W, Fe, Au, Mn .

Ионы металлов являются непременными компонентами природных водоемов. В зависимости от условий среды (pH, окислительно-восстановительный потенциал, наличие лигандов) они существуют в разных степенях окисления и входят в состав разнообразных неорганических и металлорганических соединений, которые могут быть истинно растворенными, коллоидно-дисперсными или входить в состав минеральных и органических взвесей.

Истинно растворенные формы металлов, в свою очередь, весьма разнообразны, что связано с процессами гидролиза, гидролитической полимеризации (образованием полиядерных гидроксокомплексов) и комплексообразования с различными лигандами. Соответственно, как каталитические свойства металлов, так и доступность для водных микроорганизмов зависят от форм существования их в водной экосистеме.

Многие металлы образуют довольно прочные комплексы с органикой; эти комплексы являются одной из важнейших форм миграции элементов в природных водах. Большинство органических комплексов образуются по хелатному циклу и являются устойчивыми. Комплексы, образуемые почвенными кислотами с солями железа, алюминия, титана, урана, ванадия, меди, молибдена и других тяжелых металлов, относительно хорошо растворимы в условиях нейтральной, слабокислой и слабощелочной сред. Поэтому металлорганические комплексы способны мигрировать в природных водах на весьма значительные расстояния. Особенно важно это для маломинерализованных и в первую очередь поверхностных вод, в которых образование других комплексов невозможно.

Для понимания факторов, которые регулируют концентрацию металла в природных водах, их химическую реакционную способность, биологическую доступность и токсичность, необходимо знать не только валовое содержание, но и долю свободных и связанных форм металла.

Переход металлов в водной среде в металлокомплексную форму имеет три следствия:

1. Может происходить увеличение суммарной концентрации ионов металла за счет перехода его в раствор из донных отложений;

2. Мембранная проницаемость комплексных ионов может существенно отличаться от проницаемости гидратированных ионов;

3. Токсичность металла в результате комплексообразования может сильно измениться.

Так, хелатные формы Cu, Cd, Hg менее токсичны, нежели свободные ионы. Для понимания факторов, которые регулируют концентрацию металла в природных водах, их химическую реакционную способность, биологическую доступность и токсичность, необходимо знать не только валовое содержание, но и долю связанных и свободных форм .

Источниками загрязнения вод тяжелыми металлами служат сточные воды гальванических цехов, предприятий горнодобывающей, черной и цветной металлургии, машиностроительных заводов. Тяжелые металлы входят в состав удобрений и пестицидов и могут попадать в водоемы вместе со стоком с сельскохозяйственных угодий.

Повышение концентрации тяжелых металлов в природных водах часто связано с другими видами загрязнения, например, с закислением. Выпадение кислотных осадков способствует снижению значения рН и переходу металлов из сорбированного на минеральных и органических веществах состояния в свободное.

Прежде всего представляют интерес те металлы, которые в наибольшей степени загрязняют атмосферу ввиду использования их в значительных объемах в производственной деятельности и в результате накопления во внешней среде представляют серьезную опасность с точки зрения их биологической активности и токсических свойств. К ним относят свинец, ртуть, кадмий, цинк, висмут, кобальт, никель, медь, олово, сурьму, ванадий, марганец, хром, молибден и мышьяк.

Биогеохимические свойства тяжелых металлов

Свойство

Биохимическая активность

Токсичность

Канцерогенность

Обогащение аэрозолей

Минеральная форма распространения

Органическая форма распространения

Подвижность

Тенденция к биоконцентрированию

Эффективность накопления

Комплексообразующая способность

Склонность к гидролизу

Растворимость соединений

Время жизни

В - высокая, У - умеренная, Н - низкая

Ванадий находится преимущественно в рассеянном состоянии и обнаруживается в железных рудах, нефти, асфальтах, битумах, горючих сланцах, углях и др. Одним из главных источников загрязнения природных вод ванадием являются нефть и продукты ее переработки.

В природных водах встречается в очень малой концентрации: в воде рек 0.2 - 4.5 мкг/дм3, в морской воде - в среднем 2 мкг/дм3

В воде образует устойчивые анионные комплексы (V4 O12)4- и (V10 O26)6-. В миграции ванадия существенна роль растворенных комплексных соединений его с органическими веществами, особенно с гумусовыми кислотами.

Повышенные концентрации ванадия вредны для здоровья человека. ПДКв ванадия составляет 0.1 мг/дм3 (лимитирующий показатель вредности - санитарно-токсикологический), ПДКвр - 0.001 мг/дм3 .

Естественными источниками поступления висмута в природные воды являются процессы выщелачивания висмутсодержащих минералов. Источником поступления в природные воды могут быть также сточные воды фармацевтических и парфюмерных производств, некоторых предприятий стекольной промышленности.

В незагрязненных поверхностных водах содержится в субмикрограммовых концентрациях. Наиболее высокая концентрация обнаружена в подземных водах и составляет 20 мкг/дм3, в морских водах - 0.02 мкг/дм3. ПДКв составляет 0.1 мг/дм3

Главными источниками соединений железа в поверхностных водах являются процессы химического выветривания горных пород, сопровождающиеся их механическим разрушением и растворением. В процессе взаимодействия с содержащимися в природных водах минеральными и органическими веществами образуется сложный комплекс соединений железа, находящихся в воде в растворенном, коллоидном и взвешенном состоянии. Значительные количества железа поступают с подземным стоком и со сточными водами предприятий металлургической, металлообрабатывающей, текстильной, лакокрасочной промышленности и с сельскохозяйственными стоками.

Фазовые равновесия зависят от химического состава вод, рН, Eh и в некоторой степени от температуры. В рутинном анализе во взвешенную форму выделяют частицы с размером более 0.45 мк. Она представляет собой преимущественно железосодержащие минералы, гидрат оксида железа и соединения железа, сорбированные на взвесях. Истинно растворенную и коллоидную форму обычно рассматривают совместно. Растворенное железо представлено соединениями, находящимися в ионной форме, в виде гидроксокомплекса и комплексов с растворенными неорганическими и органическими веществами природных вод. В ионной форме мигрирует главным образом Fe(II), а Fe(III) в отсутствие комплексообразующих веществ не может в значительных количествах находиться в растворенном состоянии.

Железо обнаруживается в основном в водах с низкими значениями Eh.

В результате химического и биохимического (при участии железобактерий) окисления Fe(II) переходит в Fe(III), который, гидролизуясь, выпадает в осадок в виде Fe(OH)3. Как для Fе(II), так и для Fe(III) характерна склонность к образованию гидроксокомплексов типа +, 4+, +, 3+, - и других, сосуществующих в растворе в разных концентрациях в зависимости от рН и в целом определяющих состояние системы железо-гидроксил. Основной формой нахождения Fe(III) в поверхностных водах являются комплексные соединения его с растворенными неорганическими и органическими соединениями, главным образом гумусовыми веществами. При рН = 8.0 основной формой является Fe(OH)3.Коллоидная форма железа наименее изучена, она представляет собой гидрат оксида железа Fe(OH)3 и комплексы с органическими веществами.

Содержание железа в поверхностных водах суши составляет десятые доли миллиграмма, вблизи болот - единицы миллиграммов. Повышенное содержание железа наблюдается в болотных водах, в которых оно находится в виде комплексов с солями гуминовых кислот - гуматами. Наибольшие концентрации железа (до нескольких десятков и сотен миллиграммов в 1 дм3) наблюдаются в подземных водах с низкими значениями рН.

Являясь биологически активным элементом, железо в определенной степени влияет на интенсивность развития фитопланктона и качественный состав микрофлоры в водоеме.

Концентрация железа подвержена заметным сезонным колебаниям. Обычно в водоемах с высокой биологической продуктивностью в период летней и зимней стагнации заметно увеличение концентрации железа в придонных слоях воды. Осенне-весеннее перемешивание водных масс (гомотермия) сопровождается окислением Fe(II) в Fе(III) и выпадением последнего в виде Fe(OH)3 .

В природные воды поступает при выщелачивании почв, полиметаллических и медных руд, в результате разложения водных организмов, способных его накапливать. Соединения кадмия выносятся в поверхностные воды со сточными водами свинцово-цинковых заводов, рудообогатительных фабрик, ряда химических предприятий (производство серной кислоты), гальванического производства, а также с шахтными водами. Понижение концентрации растворенных соединений кадмия происходит за счет процессов сорбции, выпадения в осадок гидроксида и карбоната кадмия и потребления их водными организмами.

Растворенные формы кадмия в природных водах представляют собой главным образом минеральные и органо-минеральные комплексы. Основной взвешенной формой кадмия являются его сорбированные соединения. Значительная часть кадмия может мигрировать в составе клеток гидробионтов.

В речных незагрязненных и слабозагрязненных водах кадмий содержится в субмикрограммовых концентрациях, в загрязненных и сточных водах концентрация кадмия может достигать десятков микрограммов в 1 дм3 .

Соединения кадмия играют важную роль в процессе жизнедеятельности животных и человека. В повышенных концентрациях токсичен, особенно в сочетании с другими токсичными веществами.

ПДКв составляет 0.001 мг/дм3, ПДКвр - 0.0005 мг/дм3 (лимитирующий признак вредности - токсикологический).

В природные воды соединения кобальта попадают в результате процессов выщелачивания их из медноколчедановых и других руд, из почв при разложении организмов и растений, а также со сточными водами металлургических, металлообрабатывающих и химических заводов. Некоторые количества кобальта поступают из почв в результате разложения растительных и животных организмов.

Соединения кобальта в природных водах находятся в растворенном и взвешенном состоянии, количественное соотношение между которыми определяется химическим составом воды, температурой и значениями рН. Растворенные формы представлены в основном комплексными соединениями, в т.ч. с органическими веществами природных вод. Соединения двухвалентного кобальта наиболее характерны для поверхностных вод. В присутствии окислителей возможно существование в заметных концентрациях трехвалентного кобальта.

Кобальт относится к числу биологически активных элементов и всегда содержится в организме животных и в растениях. С недостаточным содержанием его в почвах связано недостаточное содержание кобальта в растениях, что способствует развитию малокровия у животных (таежно-лесная нечерноземная зона). Входя в состав витамина В12, кобальт весьма активно влияет на поступление азотистых веществ, увеличение содержания хлорофилла и аскорбиновой кислоты, активизирует биосинтез и повышает содержание белкового азота в растениях. Вместе с тем повышенные концентрации соединений кобальта являются токсичными.

В речных незагрязненных и слабозагрязненных водах его содержание колеблется от десятых до тысячных долей миллиграмма в 1 дм3, среднее содержание в морской воде 0.5 мкг/дм3. ПДКв составляет 0.1 мг/дм3, ПДКвр 0.01 мг/дм3.

Марганец

В поверхностные воды марганец поступает в результате выщелачивания железомарганцевых руд и других минералов, содержащих марганец (пиролюзит, псиломелан, браунит, манганит, черная охра). Значительные количества марганца поступают в процессе разложения водных животных и растительных организмов, особенно сине-зеленых, диатомовых водорослей и высших водных растений. Соединения марганца выносятся в водоемы со сточными водами марганцевых обогатительных фабрик, металлургических заводов, предприятий химической промышленности и с шахтными водами.

Понижение концентрации ионов марганца в природных водах происходит в результате окисления Mn(II) до MnO2 и других высоковалентных оксидов, выпадающих в осадок. Основные параметры, определяющие реакцию окисления, - концентрация растворенного кислорода, величина рН и температура. Концентрация растворенных соединений марганца понижается вследствие утилизации их водорослями.

Главная форма миграции соединений марганца в поверхностных водах - взвеси, состав которых определяется в свою очередь составом пород, дренируемых водами, а также коллоидные гидроксиды тяжелых металлов и сорбированные соединения марганца. Существенное значение в миграции марганца в растворенной и коллоидной формах имеют органические вещества и процессы комплексообразования марганца с неорганическими и органическими лигандами. Mn(II) образует растворимые комплексы с бикарбонатами и сульфатами. Комплексы марганца с ионом хлора встречаются редко. Комплексные соединения Mn(II) с органическими веществами обычно менее прочны, чем с другими переходными металлами. К ним относятся соединения с аминами, органическими кислотами, аминокислотами и гумусовыми веществами. Mn(III) в повышенных концентрациях может находиться в растворенном состоянии только в присутствии сильных комплексообразователей, Mn(YII) в природных водах не встречается.

В речных водах содержание марганца колеблется обычно от 1 до 160 мкг/дм3, среднее содержание в морских водах составляет 2 мкг/дм3, в подземных - n. 102 - n. 103 мкг/дм3.

Концентрация марганца в поверхностных водах подвержена сезонным колебаниям.

Факторами, определяющими изменения концентраций марганца, являются соотношение между поверхностным и подземным стоком, интенсивность потребления его при фотосинтезе, разложение фитопланктона, микроорганизмов и высшей водной растительности, а также процессы осаждения его на дно водных объектов.

Роль марганца в жизни высших растений и водорослей водоемов весьма велика. Марганец способствует утилизации CO2 растениями, чем повышает интенсивность фотосинтеза, участвует в процессах восстановления нитратов и ассимиляции азота растениями. Марганец способствует переходу активного Fe(II) в Fe(III), что предохраняет клетку от отравления, ускоряет рост организмов и т.д. Важная экологическая и физиологическая роль марганца вызывает необходимость изучения и распределения марганца в природных водах.

Для водоемов санитарно-бытового использования установлена ПДКв (по иону марганца), равная 0.1 мг/дм3 .

Ниже представлены карты распределения средних концентраций металлов: марганца, меди, никеля и свинца, построенные по данным наблюдений за 1989 - 1993 гг. в 123 городах. Использование более поздних данных предполагается нецелесообразным, поскольку в связи с сокращением производства значительно снизились концентрации взвешенных веществ и соответственно, металлов.

Влияние на здоровье. Многие металлы являются составляющей пыли и оказывают существенное влияние на здоровье.

Марганец поступает в атмосферу от выбросов предприятий черной металлургии (60% всех выбросов марганца), машиностроения и металлообработки (23%), цветной металлургии (9%), многочисленных мелких источников, например, от сварочных работ.

Высокие концентрации марганца приводят к появлению нейротоксических эффектов, прогрессирующего поражения центральной нервной системы, пневмонии.
Самые высокие концентрации марганца (0,57 - 0,66 мкг/м3) наблюдаются в крупных центрах металлургии: в Липецке и Череповце, а также в Магадане. Больше всего городов с высокими концентрациями Mn (0,23 - 0,69 мкг/м3) сосредоточено на Кольском полуострове: Заполярный, Кандалакша, Мончегорск, Оленегорск (см. карту).

За 1991 - 1994 гг. выбросы марганца от промышленных источников снизились на 62%, средние концентрации – на 48%.



Медь - один из важнейших микроэлементов. Физиологическая активность меди связана главным образом с включением ее в состав активных центров окислительно-восстановительных ферментов. Недостаточное содержание меди в почвах отрицательно влияет на синтез белков, жиров и витаминов и способствует бесплодию растительных организмов. Медь участвует в процессе фотосинтеза и влияет на усвоение азота растениями. Вместе с тем, избыточные концентрации меди оказывают неблагоприятное воздействие на растительные и животные организмы.

В природных водах наиболее часто встречаются соединения Cu(II). Из соединений Cu(I) наиболее распространены трудно растворимые в воде Cu2 O, Cu2 S, CuCl. При наличии в водной среде лигандов наряду с равновесием диссоциации гидроксида необходимо учитывать образование различных комплексных форм, находящихся в равновесии с акваионами металла.

Основным источником поступления меди в природные воды являются сточные воды предприятий химической, металлургической промышленности, шахтные воды, альдегидные реагенты, используемые для уничтожения водорослей. Медь может появляться в результате коррозии медных трубопроводов и других сооружений, используемых в системах водоснабжения. В подземных водах содержание меди обусловлено взаимодействием воды с горными породами, содержащими ее (халькопирит, халькозин, ковеллин, борнит, малахит, азурит, хризаколла, бротантин).

Предельно допустимая концентрация меди в воде водоемов санитарно-бытового водопользования составляет 0.1 мг/дм3 (лимитирующий признак вредности - общесанитарный), в воде рыбохозяйственных водоемов - 0.001 мг/дм3.

Выбросы М (тыс.т/год) оксида меди и среднегодовые концентрации q (мкг/м3) меди.

Медь поступает в воздух с выбросами металлургических производств. В выбросах твердых веществ она содержится в основном в виде соединений, преимущественно оксида меди.

На долю предприятий цветной металлургии приходится 98,7 % всех антропогенных выбросов этого металла, из них 71% осуществляется предприятиями концерна “Норильский никель”, расположенными в Заполярном и Никеле, Мончегорске и Норильске, а еще примерно 25% выбросов меди осуществляются в Ревде, Красноуральске, Кольчугино и в других.



Высокие концентрации меди приводят к интоксикации, анемии и заболеванию гепатитом.

Как видно из карты, самые высокие концентрации меди отмечены в городах Липецк и Рудная Пристань. Повышены также концентрации меди в городах Кольского полуострова, в Заполярном, Мончегорске, Никеле, Оленегорске, а также в Норильске.

Выбросы меди от промышленных источников снизились на 34%, средние концентрации – на 42%.

Молибден

Соединения молибдена попадают в поверхностные воды в результате выщелачивания их из экзогенных минералов, содержащих молибден. Молибден попадает в водоемы также со сточными водами обогатительных фабрик, предприятий цветной металлургии. Понижение концентраций соединений молибдена происходит в результате выпадения в осадок труднорастворимых соединений, процессов адсорбции минеральными взвесями и потребления растительными водными организмами.

Молибден в поверхностных водах находится в основном в форме МоО42- . Весьма вероятно существование его в виде органоминеральных комплексов. Возможность некоторого накопления в коллоидном состоянии вытекает из того факта, что продукты окисления молибденита представляют рыхлые тонкодисперсные вещества.

В речных водах молибден обнаружен в концентрациях от 2.1 до 10.6 мкг/дм3. В морской воде содержится в среднем 10 мкг/дм3 молибдена.

В малых количествах молибден необходим для нормального развития растительных и животных организмов. Молибден входит в состав фермента ксантиноксидазы. При дефиците молибдена фермент образуется в недостаточном количестве, что вызывает отрицательные реакции организма. В повышенных концентрациях молибден вреден. При избытке молибдена нарушается обмен веществ.

Предельно допустимая концентрация молибдена в водоемах санитарно-бытового использования составляет 0.25 мг/дм3 .

В природные воды мышьяк поступает из минеральных источников, районов мышьяковистого оруднения (мышьяковый колчедан, реальгар, аурипигмент), а также из зон окисления пород полиметаллического, медно-кобальтового и вольфрамового типов. Некоторое количество мышьяка поступает из почв, а также в результате разложения растительных и животных организмов. Потребление мышьяка водными организмами является одной из причин понижения концентрации его в воде, наиболее отчетливо проявляющегося в период интенсивного развития планктона.

Значительные количества мышьяка поступают в водные объекты со сточными водами обогатительных фабрик, отходами производства красителей, кожевенных заводов и предприятий, производящих пестициды, а также с сельскохозяйственных угодий, на которых применяются пестициды.

В природных водах соединения мышьяка находятся в растворенном и взвешенном состоянии, соотношение между которыми определяется химическим составом воды и значениями рН. В растворенной форме мышьяк встречается в трех- и пятивалентной форме, главным образом в виде анионов.

В речных незагрязненных водах мышьяк находится обычно в микрограммовых концентрациях. В минеральных водах его концентрация может достигать нескольких миллиграммов в 1 дм3, в морских водах в среднем содержится 3 мкг/дм3, в подземных - встречается в концентрациях n. 105 мкг/дм3. Соединения мышьяка в повышенных концентрациях являются токсичными для организма животных и человека: они тормозят окислительные процессы, угнетают снабжение кислородом органов и тканей.

ПДКв мышьяка составляет 0.05 мг/дм3 (лимитирующий показатель вредности - санитарно-токсикологический) и ПДКвр - 0.05 мг/дм3 .

Присутствие никеля в природных водах обусловлено составом пород, через которые проходит вода: он обнаруживается в местах месторождений сульфидных медно-никелевых руд и железо-никелевых руд. В воду попадает из почв и из растительных и животных организмов при их распаде. Повышенное по сравнению с другими типами водорослей содержание никеля обнаружено в сине-зеленых водорослях. Соединения никеля в водные объекты поступают также со сточными водами цехов никелирования, заводов синтетического каучука, никелевых обогатительных фабрик. Огромные выбросы никеля сопровождают сжигание ископаемого топлива.

Концентрация его может понижаться в результате выпадения в осадок таких соединений, как цианиды, сульфиды, карбонаты или гидроксиды (при повышении значений рН), за счет потребления его водными организмами и процессов адсорбции.

В поверхностных водах соединения никеля находятся в растворенном, взвешенном и коллоидном состоянии, количественное соотношение между которыми зависит от состава воды, температуры и значений рН. Сорбентами соединений никеля могут быть гидроксид железа, органические вещества, высокодисперсный карбонат кальция, глины. Растворенные формы представляют собой главным образом комплексные ионы, наиболее часто с аминокислотами, гуминовыми и фульвокислотами, а также в виде прочного цианидного комплекса. Наиболее распространены в природных водах соединения никеля, в которых он находится в степени окисления +2. Соединения Ni3+ образуются обычно в щелочной среде.

Соединения никеля играют важную роль в кроветворных процессах, являясь катализаторами. Повышенное его содержание оказывает специфическое действие на сердечно-сосудистую систему. Никель принадлежит к числу канцерогенных элементов. Он способен вызывать респираторные заболевания. Считается, что свободные ионы никеля (Ni2+) примерно в 2 раза более токсичны, чем его комплексные соединения.



В речных незагрязненных и слабозагрязненных водах концентрация никеля колеблется обычно от 0.8 до 10 мкг/дм3; в загрязненных она составляет несколько десятков микрограммов в 1 дм3. Средняя концентрация никеля в морской воде 2 мкг/дм3, в подземных водах - n. 103 мкг/дм3. В подземных водах, омывающих никельсодержащие горные породы, концентрация никеля иногда возрастает до 20 мг/дм3.

Никель поступает в атмосферу от предприятий цветной металлургии, на долю которых приходится 97% всех выбросов никеля, из них 89% на долю предприятий концерна “Норильский никель”, расположенных в Заполярном и Никеле, Мончегорске и Норильске.

Повышенное содержание никеля в окружающей среде приводит к появлению эндемических заболеваний, бронхиального рака. Соединения никеля относят к 1 группе канцерогенов.

На карте видно несколько точек с высокими средними концентрациями никеля в местах расположения концерна Норильский никель: Апатиты, Кандалакша, Мончегорск, Оленегорск.

Выбросы никеля от промышленных предприятий снизились на 28%, средние концентрации – на 35%.

Выбросы М (тыс.т/год) и среднегодовые концентрации q (мкг/м3) никеля.

В природные воды поступает в результате процессов выщелачивания оловосодержащих минералов (касситерит, станнин), а также со сточными водами различных производств (крашение тканей, синтез органических красок, производство сплавов с добавкой олова и др.).

Токсическое действие олова невелико.

В незагрязненных поверхностных водах олово содержится в субмикрограммовых концентрациях. В подземных водах его концентрация достигает единиц микрограммов в 1 дм3 .ПДКв составляет 2 мг/дм3 .

В поверхностные воды соединения ртути могут поступать в результате выщелачивания пород в районе ртутных месторождений (киноварь, метациннабарит, ливингстонит), в процессе разложения водных организмов, накапливающих ртуть. Значительные количества поступают в водные объекты со сточными водами предприятий, производящих красители, пестициды, фармацевтические препараты, некоторые взрывчатые вещества. Тепловые электростанции, работающие на угле, выбрасывают в атмосферу значительные количества соединений ртути, которые в результате мокрых и сухих выпадений попадают в водные объекты.

Понижение концентрации растворенных соединений ртути происходит в результате извлечения их многими морскими и пресноводными организмами, обладающими способностью накапливать ее в концентрациях, во много раз превышающих содержание ее в воде, а также процессов адсорбции взвешенными веществами и донными отложениями.

В поверхностных водах соединения ртути находятся в растворенном и взвешенном состоянии. Соотношение между ними зависит от химического состава воды и значений рН. Взвешенная ртуть представляет собой сорбированые соединения ртути. Растворенными формами являются недиссоциированные молекулы, комплексные органические и минеральные соединения. В воде водных объектов ртуть может находиться в виде метилртутных соединений.

Соединения ртути высоко токсичны, они поражают нервную систему человека, вызывают изменения со стороны слизистой оболочки, нарушение двигательной функции и секреции желудочно-кишечного тракта, изменения в крови и др. Бактериальные процессы метилирования направлены на образование метилртутных соединений, которые во много раз токсичнее минеральных солей ртути. Метилртутные соединения накапливаются в рыбе и могут попадать в организм человека.

ПДКв ртути составляет 0.0005 мг/дм3 (лимитирующий признак вредности - санитарно-токсикологический), ПДКвр 0.0001 мг/дм3 .

Естественными источниками поступления свинца в поверхностные воды являются процессы растворения эндогенных (галенит) и экзогенных (англезит, церуссит и др.) минералов. Значительное повышение содержания свинца в окружающей среде (в т.ч. и в поверхностных водах) связано со сжиганием углей, применением тетраэтилсвинца в качестве антидетонатора в моторном топливе, с выносом в водные объекты со сточными водами рудообогатительных фабрик, некоторых металлургических заводов, химических производств, шахт и т.д. Существенными факторами понижения концентрации свинца в воде является адсорбция его взвешенными веществами и осаждение с ними в донные отложения. В числе других металлов свинец извлекается и накапливается гидробионтами.

Свинец находится в природных водах в растворенном и взвешенном (сорбированном) состоянии. В растворенной форме встречается в виде минеральных и органоминеральных комплексов, а также простых ионов, в нерастворимой - главным образом в виде сульфидов, сульфатов и карбонатов.

В речных водах концентрация свинца колеблется от десятых долей до единиц микрограммов в 1 дм3. Даже в воде водных объектов, прилегающих к районам полиметаллических руд, концентрация его редко достигает десятков миллиграммов в 1 дм3. Лишь в хлоридных термальных водах концентрация свинца иногда достигает нескольких миллиграммов в 1 дм3 .

Лимитирующий показатель вредности свинца - санитарно-токсилогический. ПДКв свинца составляет 0.03 мг/дм3, ПДКвр - 0.1 мг/дм3 .

Свинец содержится в выбросах предприятиями металлургии, металлообработки, электротехники, нефтехимии и автотранспорта.

Влияние свинца на здоровье происходит при вдыхании воздуха, содержащего свинец, и поступлении свинца с пищей, водой, на пылевых частицах. Свинец накапливается в теле, в костях и поверхностных тканях. Свинец влияет на почки, печень, нервную систему и органы кровообразования. Пожилые и дети особенно чувствительны даже к низким дозам свинца.

Выбросы М (тыс.т/год) и среднегодовые концентрации q (мкг/м3) свинца.



За семь лет выбросы свинца от промышленных источников снизились на 60% вследствие сокращения производства и закрытия многих предприятий. Резкое снижение промышленных выбросов не сопровождается снижением выбросов автотранспорта. Средние концентрации свинца снизились только на 41%. Различие в степени снижения выбросов и концентраций свинца можно объяснить неполным учетом выбросов от автомобилей в предыдущие годы; в настоящее время увеличилось количество автомобилей и интенсивность их движения.

Тетраэтилсвинец

Поступает в природные воды в связи с использованием в качестве антидетонатора в моторном топливе водных транспортных средств, а также с поверхностным стоком с городских территорий.

Данное вещество характеризуется высокой токсичностью, обладает кумулятивными свойствами.

Источниками поступления серебра в поверхностные воды служат подземные воды и сточные воды рудников, обогатительных фабрик, фотопредприятий. Повышенное содержание серебра бывает связано с применением бактерицидных и альгицидных препаратов.

В сточных водах серебро может присутствовать в растворенном и взвешенном виде, большей частью в форме галоидных солей.

В незагрязненных поверхностных водах серебро находится в субмикрограммовых концентрациях. В подземных водах концентрация серебра колеблется от единиц до десятков микрограммов в 1 дм3, в морской воде - в среднем 0.3 мкг/дм3 .

Ионы серебра способны уничтожать бактерии и уже в незначительной концентрации стерилизуют воду (нижний предел бактерицидного действия ионов серебра 2. 10-11 моль/дм3). Роль серебра в организме животных и человека изучена недостаточно.

ПДКв серебра составляет 0.05 мг/дм3 .

Сурьма поступает в поверхностные воды за счет выщелачивания минералов сурьмы (стибнит, сенармонтит, валентинит, сервантит, стибиоканит) и со сточными водами резиновых, стекольных, красильных, спичечных предприятий.

В природных водах соединения сурьмы находятся в растворенном и взвешенном состоянии. В окислительно-восстановительных условиях, характерных для поверхностных вод, возможно существование как трехвалентной, так и пятивалентной сурьмы.

В незагрязненных поверхностных водах сурьма находится в субмикрограммовых концентрациях, в морской воде ее концентрация достигает 0.5 мкг/дм3, в подземных водах - 10 мкг/дм3. ПДКв сурьмы составляет 0.05 мг/дм3 (лимитирующий показатель вредности - санитарно-токсикологический), ПДКвр - 0.01 мг/дм3.

В поверхностные воды соединения трех- и шестивалентного хрома попадают в результате выщелачивания из пород (хромит, крокоит, уваровит и др.). Некоторые количества поступают в процессе разложения организмов и растений, из почв. Значительные количества могут поступать в водоемы со сточными водами гальванических цехов, красильных цехов текстильных предприятий, кожевенных заводов и предприятий химической промышленности. Понижение концентрации ионов хрома может наблюдаться в результате потребления их водными организмами и процессов адсорбции.

В поверхностных водах соединения хрома находятся в растворенном и взвешенном состояниях, соотношение между которыми зависит от состава вод, температуры, рН раствора. Взвешенные соединения хрома представляют собой в основном сорбированные соединения хрома. Сорбентами могут быть глины, гидроксид железа, высокодисперсный оседающий карбонат кальция, остатки растительных и животных организмов. В растворенной форме хром может находитьсяв виде хроматов и бихроматов. При аэробных условиях Cr(VI) переходит в Cr(III), соли которого в нейтральной и щелочной средах гидролизуются с выделением гидроксида.

В речных незагрязненных и слабозагрязненных водах содержание хрома колеблется от нескольких десятых долей микрограмма в литре до нескольких микрограммов в литре, в загрязненных водоемах оно достигает нескольких десятков и сотен микрограммов в литре. Средняя концентрация в морских водах - 0.05 мкг/дм3, в подземных водах - обычно в пределах n. 10 - n. 102 мкг/дм3 .

Соединения Cr(VI) и Cr(III) в повышенных количествах обладают канцерогенными свойствами. Соединения Cr(VI) являются более опасными.

Попадает в природные воды в результате протекающих в природе процессов разрушения и растворения горных пород и минералов (сфалерит, цинкит, госларит, смитсонит, каламин), а также со сточными водами рудообогатительных фабрик и гальванических цехов, производств пергаментной бумаги, минеральных красок, вискозного волокна и др.

В воде существует главным образом в ионной форме или в форме его минеральных и органических комплексов. Иногда встречается в нерастворимых формах: в виде гидроксида, карбоната, сульфида и др.

В речных водах концентрация цинка обычно колеблется от 3 до 120 мкг/дм3, в морских - от 1.5 до 10 мкг/дм3. Содержание в рудных и особенно в шахтных водах с низкими значениями рН может быть значительным.

Цинк относится к числу активных микроэлементов, влияющих на рост и нормальное развитие организмов. В то же время многие соединения цинка токсичны, прежде всего его сульфат и хлорид.

ПДКв Zn2+ составляет 1 мг/дм3 (лимитирующий показатель вредности - органолептический), ПДКвр Zn2+ - 0.01 мг/дм3 (лимитирующий признак вредности - токсикологический).

Тяжёлые металлы уже сейчас занимают второе место по степени опасности, уступая пестицидам и значительно опережая такие широко известные загрязнители, как двуокись углерода и серы, в прогнозе же они должны стать самыми опасными, более опасными, чем отходы АЭС и твердые отходы. Загрязнение тяжёлыми металлами связано с их широким использованием в промышленном производстве вкупе со слабыми системами очистки, в результате чего тяжёлые металлы попадают в окружающую среду, в том числе и почву, загрязняя и отравляя её.

Тяжёлые металлы относятся к приоритетным загрязняющим веществам, наблюдения за которыми обязательны во всех средах. В различных научных и прикладных работах авторы по-разному трактуют значение понятия “тяжёлые металлы». В некоторых случаях под определение тяжелых металлов попадают элементы, относящиеся к хрупким (например, висмут) или металлоидам (например, мышьяк).

Почва являются основной средой, в которую попадают тяжёлые металлы, в том числе из атмосферы и водной среды. Она же служит источником вторичного загрязнения приземного воздуха и вод, попадающих из неё в Мировой океан. Из почвы тяжёлые металлы усваиваются растениями, которые затем попадают в пищу более высокоорганизованным животным.

3.3. Свинцовая интоксикация

В настоящее время свинец занимает первое место среди причин промышленных отравлений. Это вызвано широким применением его в различных отраслях промышленности. Воздействию свинца подвергаются рабочие, добывающие свинцовую руду, на свинцово-плавильных заводах, в производстве аккумуляторов, при пайке, в типографиях, при изготовлении хрустального стекла или керамических изделий, этилированного бензина, свинцовых красок и др. Загрязнение свинцом атмосферного воздуха, почвы и воды в окрестности таких производств, а также вблизи крупных автомобильных дорог создает угрозу поражения свинцом населения, проживающего в этих районах, и, прежде всего детей, которые более чувствительны к воздействию тяжелых металлов.

С сожалением надо отметить, что в России отсутствует государственная политика по правовому, нормативному и экономическому регулированию влияния свинца на состояние окружающей среды и здоровье населения, по снижению выбросов (сбросов, отходов) свинца и его соединений в окружающую среду, полному прекращению производства свинецсодержащих бензинов.

Вследствие чрезвычайно неудовлетворительной просветительной работы по разъяснению населению степени опасности воздействия тяжелых металлов на организм человека, в России не снижается, а постепенно увеличивается численность контингентов, имеющих профессиональный контакт со свинцом. Случаи свинцовой хронической интоксикации зафиксированы в 14 отраслях промышленности России. Ведущими являются электротехническая промышленность (производство аккумуляторов), приборостроение, полиграфия и цветная металлургия, в них интоксикация обусловлена превышением в 20 и более раз предельно допустимой концентрации (ПДК) свинца в воздухе рабочей зоны.

Значительным источником свинца являются автомобильные выхлопные газы, так как половина России все еще использует этилированный бензин. Однако металлургические заводы, в частности медеплавильные, остаются главным источником загрязнений окружающей среды. И здесь есть свои лидеры. На территории Свердловской области находятся 3 самых крупных источника выбросов свинца в стране: в городах Красноуральск, Кировоград и Ревда.

Дымовые трубы Красноуральского медеплавильного завода, построенного еще в годы сталинской индустриализации и использующего оборудование 1932 года, ежегодно извергают на 34-тысячный город 150 -170 тонн свинца, покрывая все свинцовой пылью.

Концентрация свинца в почве Красноуральска варьируется от 42,9 до 790,8 мг/кг при предельно допустимой концентрации ПДК=130 мк/кг. Пробы воды в водопроводе соседнего пос. Октябрьский, питаемого подземным водоисточником, фиксировали превышение ПДК до двух раз.

Загрязнение окружающей среды свинцом оказывает влияние на состояние здоровья людей. Воздействие свинца нарушает женскую и мужскую репродуктивную систему. Для женщин беременных и детородного возраста повышенные уровни свинца в крови представляют особую опасность, так как под действием свинца нарушается менструальная функция, чаще бывают преждевременные роды, выкидыши и смерть плода вследствие проникновения свинца через плацентарный барьер. У новорожденных детей высока смертность.

Отравление свинцом чрезвычайно опасно для маленьких детей - он действует на развитие мозга и нервной системы. Проведенное тестирование 165 красноуральских детей от 4 лет выявило существенную задержку психического развития у 75,7%, а у 6,8% обследованных детей обнаружена умственная отсталость, включая олигофрению.

Дети дошкольного возраста наиболее восприимчивы к вредному воздействию свинца, поскольку их нервная система находится в стадии формирования. Даже при низких дозах свинцовое отравление вызывает снижение интеллектуального развития, внимания и умения сосредоточиться, отставание в чтении, ведет к развитию агрессивности, гиперактивности и другим проблемам в поведении ребенка. Эти отклонения в развитии могут носить длительный характер и быть необратимыми. Низкий вес при рождении, отставание в росте и потеря слуха также являются результатом свинцового отравления. Высокие дозы интоксикации ведут к умственной отсталости, вызывают кому, конвульсии и смерть.

Белая книга, опубликованная российскими специалистами, сообщает, что свинцовое загрязнение покрывает всю страну и является одним из многочисленных экологических бедствий в бывшем Советском Союзе, которые стали известны в последние годы. Большая часть территории России испытывает нагрузку от выпадения свинца, превышающую критическую для нормального функционирования экосистемы. В десятках городов отмечается превышение концентраций свинца в воздухе и почве выше величин, соответствующих ПДК.

Наибольший уровень загрязнения воздуха свинцом, превышающий ПДК, отмечался в городах Комсомольск-на-Амуре, Тобольск, Тюмень, Карабаш, Владимир, Владивосток.

Максимальные нагрузки выпадения свинца, ведущие к деградации наземных экосистем, наблюдаются в Московской, Владимирской, Нижегородской, Рязанской, Тульской, Ростовской и Ленинградской областях.

Стационарные источники ответственны за сброс более 50 тонн свинца в виде различных соединений в водные объекты. При этом 7 аккумуляторных заводов сбрасывают ежегодно 35 тонн свинца через канализационную систему. Анализ распределения сбросов свинца в водные объекты на территории России показывает, что по этому виду нагрузки лидируют Ленинградская, Ярославская, Пермская, Самарская, Пензенская и Орловская области.

В стране необходимы срочные меры по снижению свинцового загрязнения, однако пока экономический кризис России затмевает экологические проблемы. В затянувшейся промышленной депрессии Россия испытывает недостаток средств для ликвидации прежних загрязнений, но если экономика начнет восстанавливаться, а заводы вернутся к работе, загрязнение может только усилиться.

10 наиболее загрязненных городов бывшего СССР

(Металлы приведены в порядке убывания уровня приоритетности для данного города)

1. Рудная Пристань

(Примор. край)

свинец, цинк, медь, марганец+ванадий, марганец.

2. Белово (Кемеровская область)

цинк, свинец, медь, никель.

3. Ревда (Свердловская область)

медь, цинк, свинец.

4. Магнитогорск

никель, цинк, свинец.

5. Глубокое (Белоруссия)

медь, свинец, цинк.

6. Усть-Каменогорск (Казахстан)

цинк, медь, никель.

7. Дальнегорск

(Приморский край)

свинец, цинк.

8. Мончегорск (Мурманская обл.)

никель.

9. Алаверди (Армения)

медь, никель, свинец.

10. Константиновка (Украина)

свинец, ртуть.

4. Гигиена почвы. Обезвреживание отходов.

Почва в городах и прочих населенных пунктах и их окрест­ностях уже давно отличается от природной, биологически цен­ной почвы, играющей важную роль в поддержании экологиче­ского равновесия. Почва в городах подвержена тем же вредным воздействиям, что и городской воздух и гидросфера, поэтому по­всеместно происходит значительная ее деградация. Гигиене поч­вы не уделяется достаточного внимания, хотя ее значение как одного из основных компонентов биосферы (воздух, вода, поч­ва) и биологического фактора окружающей среды еще более весомое, чем воды, поскольку количество последней (в первую очередь качество подземных вод) определяется состоянием поч­вы, и отделить эти факторы друг от друга невозможно. Почва обладает способностью биологического самоочищения: в почве происходит расщепление попавших в нее отходов н их минера­лизация; в конечном итоге почва компенсирует за их счет утра­ченные минеральные вещества.

Если в результате перегрузки почвы будет утерян любой из компонентов ее минерализирующей способности, это неизбеж­но приведет к нарушению механизма самоочищения и к полной деградации почвы. И, напротив, создание оптимальных условий для самоочищения почвы способствует сохранению экологиче­ского равновесия и условий для существования всех живых ор­ганизмов, в том числе и человека.

Поэтому проблема обезвреживания отходов, оказывающих вредное биологическое действие, не сводится только к вопросу их вывоза; она является более сложной гигиенической пробле­мой, так как почва является связующим звеном между водой, воздухом и человеком.

4.1. Роль почвы в обмене веществ

Биологическая взаимосвязь между почвой и человеком осу­ществляется главным образом путем обмена веществ. Почва является как бы поставщиком минеральных веществ, необхо­димых для цикла обмена веществ, для роста растений, потреб­ляемых человеком и травоядными животными, съедаемыми в свою очередь человеком и плотоядными животными. Таким об­разом, почва обеспечивает пищей многих представителей расти­тельного и животного мира.

Следовательно, ухудшение качества почвы, понижение ее биологической ценности, способности к самоочищению вызы­вает биологическую цепную реакцию, которая в случае продол­жительного вредного воздействия может привести к самым различным расстройствам здоровья у населения. Более того, в слу­чае замедления процессов минерализации образующиеся при распаде веществ нитраты, азот, фосфор, калий и т. д. могут по­падать в используемые для питьевых нужд подземные воды и явиться причиной серьезных заболеваний (например, нитраты могут вызвать метгемоглобинемию, в первую очередь у детой грудного возраста).

Потребление воды из бедной йодом почвы может стать при­чиной эндемического зоба и т. д.

4.2. Экологическая взаимосвязь между почвой и водой и жид­кими отходами (сточными водами)

Человек добывает из почвы воду, необходимую для поддер­жания процессов обмена веществ и самой жизни. Качество воды зависит от состояния почвы; оно всегда отражает биологическое состояние данной почвы.

Это в особенности относится к подземным водам, био­логическая ценность которых существенно определяется свой­ствами грунтов и почвы, способностью к самоочищению послед­ней, ее фильтрационной способностью, составом ее макрофлоры, микрофауны и т. д.

Прямое влияние почвы на поверхностные воды уже ме­нее значительно, оно связано главным образом с выпадением осадков. Например, после обильных дождей из почвы смываются в открытые водоемы (реки, озера) различные загрязняющие ве­щества, в том числе искусственные удобрения (азотные, фос­фатные), пестициды, гербициды, в районах карстовых, трещино­ватых отложений загрязняющие вещества могут проникнуть че­рез щели в глубоко расположенные подземные воды.

Несоответствующая очистка сточных вод также может стать причиной вредного биологического действия на почву и в конеч­ном итоге привести к ее деградации. Поэтому охрана почвы в населенных пунктах представляет одно из основных требований охраны окружающей среды в целом.

4.3. Пределы нагрузки почвы твердыми отходами (бытовой и уличный мусор, промышленные отходы, сухой ил, остающийся после осаждения сточных вод, радиоактивные вещества и т. д.)

Проблема осложняется тем, что в результате образования все большего количества твердых отходов в городах почва в их окрестностях подвергается все более значительным нагрузкам. Свойства и состав почвы ухудшаются все более бы­стрыми темпами.

Из произведенных в США 64,3 млн. т бумаги 49,1 млн. т попадает в отходы (из этого количества 26 млн. т «поставляет» домашнее хозяйство, а 23,1 млн. т - торговая сеть).

В связи с изложенным удаление и окончательное обезврежи­вание твердых отходов представляет весьма существенную, более трудно осуществимую гигиеническую проблему в ус­ловиях усиливающейся урбанизации.

Окончательное обезвреживание твердых отходов в загрязнен­ной почве представляется возможным. Однако ввиду постоянно ухудшающейся способности к самоочищению городской почвы окончательное обезвреживание отходов, закапываемых в землю, невозможно.

Человек мог бы с успехом воспользоваться для обезврежи­вания твердых отходов биохимическими процессами, происходя­щими в почве, ее обезвреживающей и обеззараживающей способ­ностью, однако городская почва в результате многовекового проживания в городах человека и его деятельности уже давно стала непригодной для этой цели.

Механизмы самоочищения, минерализации, происходящие в почве, роль участвующих в них бактерий и энзимов, а также промежуточные и конечные продукты распада веществ хорошо известны. В настоящее время исследования направлены на вы­явление факторов, обеспечивающих биологическое равновесие природной почвы, а также на выяснение вопроса, какое количе­ство твердых отходов (и какой их состав) может привести к нарушению биологического равновесия почвы.

Количество бытовых отходов (мусора) из расчета на одного жителя некоторых крупных городов мира

Необходимо отметить, что гигиеническое состояние почвы в городах в результате ее перегрузки быстро ухудшается, хотя способность почвы к самоочищению является основным гигиени­ческим требованием для сохранения биологического равновесия. Почва в городах уже не в состоянии справиться без помощи че­ловека со своей задачей. Единственный выход из создавшегося положения - полное обезвреживание и уничтожение отходов в соответствии с гигиеническими требованиями.

Поэтому деятельность по строительству коммунальных соору­жений должна быть направлена на сохранение природной спо­собности почвы к самоочищению, а если эта ее способность ста­ла уже неудовлетворительной, то надо восстановить ее искус­ственным путем.

Наиболее неблагоприятным является токсическое действие промышленных отходов - как жидких, так и твердых. В почву попадает все большее количество таких отходов, с которыми она не в состоянии справиться. Так, например, установлено за­грязнение почвы мышьяком в окрестностях заводов по производ­ству суперфосфатов (в радиусе 3 км). Как известно, некото­рые пестициды, такие, как хлорорганические соединения, попав­шие в почву, длительно не подвергаются распаду.

Подобным же образом обстоит дело и с некоторыми синте­тическими упаковочными материалами (поливинилхлорид, по­лиэтилен и т. д.).

Некоторые токсические соединения рано пли поздно попа­дают в подземные воды, в результате чего нарушается не только биологическое равновесие почвы, но ухудшается и качество подземных вод до такой степени, что их уже нельзя использо­вать в качестве питьевых.

Процентное соотношение количества основных синтетических материалов, содержащихся в бытовых отходах (мусор)

* Вместе с отходами прочих пластмасс, затвердевающих под дейст­вием тепла.

Проблема отходов возросла в наши дни еще и потому, что часть отходов, главным образом фекалии человека и животных используют для удобрения сельскохозяйственных угодий [в фе­калиях содержится значительное количество азота -0.4- 0,5%, фосфора (Р20з) -0,2-0,6%, калия (К?0) -0,5-1,5%, углерода -5-15%]. Эта проблема города распространилась и на городские окрестности.

4.4. Роль почвы в распространении различных заболеваний

Почве принадлежит определенная роль в распространении инфекционных заболеваний. Об этом сообщали еще в прош­лом веке Petterkoffer (1882) и Fodor (1875), осветившие глав­ным образом роль почвы в распространении кишечных заболе­ваний: холеры, брюшного тифа, дизентерии и т. д. Они обрати­ли внимание также на то обстоятельство, что некоторые бакте­рии и вирусы сохраняют в почве месяцами жизнеспособность и вирулентность. В последующем ряд авторов подтвердили их наблюдения, в особенности в отношении городской почвы. Так, например, возбудитель холеры сохраняет жизнеспособность и патогенность в подземных водах от 20 до 200 дней, возбудитель брюшного тифа в фекалиях - от 30 до 100 дней, возбудитель паратифа - от 30 до 60 дней. (С точки зрения распространения инфекционных болезней городская почва представляет значи­тельно большую опасность, чем почва на полях, удобренная на­возом.)

Для определения степени загрязнения почвы ряд авторов пользуются определением бактериального числа (кишечной па­лочки), как и при определении качества воды. Другие авторы считают целесообразным определять, кроме того, число термо­фильных бактерий, принимающих участие в процессе минера­лизации.

Распространению инфекционных болезней посредст­вом почвы в значительной степени способствует полив земель сточными водами. При этом ухудшаются и минерализационные свойства почвы. Поэтому полив сточными водами должен осу­ществляться под постоянным строгим санитарным надзором и только вне городской территории.

4.5. Вредное действие основных типов загрязнителей (твер­дых и жидких отходов), приводящих к деградации почвы

4.5.1. Обезвреживание жидких отходов в почве

В ряде населенных пунктов, не имеющих канализации, некоторые отходы, в том числе и навоз, обезвреживают в почве.

Как известно, это наиболее простой способ обезвреживания. Однако он допустим лишь в том случае, если мы имеем дело с биологически полноценной почвой, сохранившей способность к самоочищению, что нехарактерно для городских почв. Если поч­ва уже не обладает этими качествами, то для того, чтобы защи­тить ее от дальнейшей деградации, возникает необходимость в сложных технических сооружениях для обезвреживания жид­ких отходов.

В ряде мест отходы обезвреживают в компостных ямах. В техническом отношении это решение представляет со­бой сложную задачу. Кроме того, жидкие способны проникнуть в почве на довольно большие расстояния. Задача осложняется еще и тем, что в городских сточных водах содержится все большее количе­ство токсических промышленных отходов, ухудшающих минерализационные свойства почвы еще в большей степени, чем че­ловеческие и животные фекалии. Поэтому в компостные ямы допустимо спускать лишь сточные воды, подвергшиеся предва­рительно отстою. В противном случае нарушается фильтрационная способность почвы, затем почва утрачивает и остальные защитные свойства, постепенно происходит закупорка пор и т. д.

Применение человеческих фекалий для полива сель­скохозяйственных полей представляет второй способ обезврежи­вания жидких отходов. Этот способ представляет собой двойную гигиеническую опасность: во-первых, он может привести к перегрузке почвы; во-вторых, эти отходы могут стать серьезным источником рас­пространения инфекции. Поэтому фекалии необходимо предва­рительно обеззараживать и подвергать соответствующей обра­ботке и лишь после этого использовать в качестве удобрения. Здесь сталкиваются две противоположные точки зрения. Сог­ласно гигиеническим требованиям, фекалии подлежат почти полному уничтожению, а с точки зрения народного хозяйства они представляют ценное удобрение. Свежие фекалии нельзя использовать для полива огородов и полей без предварительного их обеззараживания. Если все же приходится пользоваться све­жими фекалиями, то они требуют такой степени обезврежива­ния, что как удобрение они уже не представляют почти никакой ценности.

Фекалии могут быть использованы в качество удобрения только на специально выделенных участках - при постоянном санитарно-гигиеническом контроле, в особенности за состояни­ем подземных вод, количеством, мух и т. д.

Требования к удалению и почвенному обезврежива­нию фекалий животных в принципе не отличаются от требова­ний, предъявляемых к обезвреживанию человеческих фекалий.

До недавнего времени навоз представлял в сельском хозяй­стве существенный источник ценных питательных веществ, необходимых для повышения плодородия почвы. Однако в пос­ледние годы навоз утратил свое значение отчасти из-за механи­зации сельского хозяйства, отчасти из-за все более широкого применения искусственных удобрений.

При отсутствии соответствующей обработки и обезвреживания навоз также представляет опасность, как и необезвреженные фекалии человека. Поэтому навозу перед тем, как его вывезти на поля, дают созреть, чтобы за это время в нем (при температуре 60-70°С) могли произойти необходимые биотермические процессы. После этого навоз считается «зрелым» и освободившимся от большинства содержащихся в нем возбуди­телей болезней (бактерии, яйца глистов и т. д.).

Необходимо помнить, что хранилища навоза могут представ­лять идеальные места для размножения мух, способствующих распространению различных кишечных инфекций. Следует от­метить, что мухи для размножения охотнее всего выбирают сви­ной навоз, затем конский, овечий и в последнюю очередь коро­вий. Перед вывозом навоза на поля его обязательно надо обработать инсектицидными средствами.

4.5.2. Обезвреживание в почве твердых отходов.

В наши дни ко­личество твердых отходов повсеместно увеличивается с угро­жающей быстротой.

Размещение и обезвреживание твердых отходов в населен­ных пунктах представляет проблему капитального значения. Однако и в наши дни в большинстве мест пользуются самыми примитивными способами уничтожения отбросов, ни применяя почти никаких, технических сооружении, а рассчитывая только на минерализационную способность почвы.

Жизненно важным вопросом является поиск наиболее эффек­тивных способов уничтожения твердых отходов. Проблема ос­ложняется тем, что значительную часть городской территории с твердым покрытием (дороги, улицы, тротуары) невозможно использовать для закапывания отходов.

Обработка твердых отходов состоит из: сбора, вывоза мусора и его обезвреживания.

4.5.2.1. Сбор и вывоз мусора.

Бытовой мусор в квартирах наиболее целесообразно собирать в педальное пластмассовое ведро с крышкой. Затем мусор помещают в специальные контейнеры (баки) во дворе или его предварительно сбрасывают в мусоро­провод. Последний способ является более удобным для жильцов, а также и более гигиеничным, так как не нужно оставлять му­сор в квартире до его выноса в контейнер. Недостатком мусоро­провода является то, что его трудно содержать в чистоте. Осо­бенно удачным является сочетание мусоропровода с печью для сжигания мусора, расположенной в подвальном помещении.

Для обезвреживания бытовых отходов наиболее целесообраз­но применение размалывающего устройства, соединенного с ра­ковиной (мойкой) на кухне. Размельченные отходы попадают прямо в канализацию. Однако этот способ имеет ряд недостат­ков. Например, пока не разрешена проблема удаления из зак­рытой канализационной сети измельченных бытовых отходов. Сама техника размельчения отходов отличается рядом недостатков. Поэтому в США, где этот способ получил широкое распрост­ранение, часто возникают заторы в канализационной сети.

С точки зрения гигиены этот метод заслуживает внимания, потому что, с одной стороны, кухонные отходы не представляют перегрузки для почвы, в которую в конечном итоге попадают, с другой стороны, метод экономичен, так как транспортировка отходов становится излишней и не нужно отводить земельные участки под свалки.

Большие, многоквартирные жилые дома, крупные учрежде­ния и предприятия, в которых имеется мусоропровод, но нет пе­чи для сжигания мусора, целесообразно снабжать контейнерами большой емкости (500-3000 л). Контейнеры доставляются на специальных машинах с подъемным краном на свалку или на мусоросжигательный завод. Недостаток использования контей­неров состоит в том, что мусор в них нельзя уплотнить. Вблизи больших жилых домов необходимо оборудовать специальные площадки для контейнеров.

В некоторых местах, где мусор не вывозится регулярно, вы­нуждены строить закрытые «домики» из бетона для сбора и временного хранения мусора. Эти «домики» должны находиться на расстоянии не менее 20 м от жилых зданий, и к ним должна быть обеспечена подъездная дорога для мусоровозов. Двери «домиков» должны быть постоянно закрытыми, чтобы они не превращались в место для размножения мух и не распространя­ли вокруг себя запах.

Одной из важных задач является содержание го­родских улиц в чистоте. Сбор и транспортировка уличного мусо­ра, уборка мостовых специальными машинами, мытье и поливка улиц, достаточное количество урн для мусора в наиболее ожив­ленных частях города (на остановках городского транспорта, в парках и скверах), уборка снега зимой и соответствующий уход за мостовыми и тротуарами в период гололедицы (исполь­зование песка или соли) представляют собой наиболее важные компоненты этой задачи.

В уличном мусоре могут содержаться патогенные микроор­ганизмы, в том числе возбудители туберкулеза, столбняка, си­бирской язвы, различные патогенные кокки и т. д. Наконец, скользкие улицы могут явиться причиной тяжелых несчастных случаев (вследствие травматизма).

Контейнеры с мусором вывозят на специально оборудован­ных мусоровозах, в которых мусор уплотняется. В последнее время широкое распространение получил сбор мусора в пласт­массовых или бумажных мешках. Этот способ сбора мусора более гигиеничен, чем сбор в контейнеры, так как при транспор­тировке мешков не образуется пыль и возможно сортировка от­ходов (на сгораемые - несгораемые вещества, синтетические материалы и т. д.).

4.5.2.2. Окончательное удаление и обезвреживание твердых отходов.

Наиболее распространенным способом удаления твердых отходов является заполнение ими оврагов и карьеров (например, на территории бывших кирпичных заводов). В пос­ледующем на этих земельных участках разбивают городские парки, строят жилые дома и т. д.

Наиболее простой вариант этого способа представляют от­крытые городские свалки. Этот вариант является в санитарно-гигиеническом отношении неудовлетворительным (загрязняют­ся почва и подземные воды, на свалках размножаются мухи, крысы и т. д.). Поэтому размещение отходов на открытых свалках надо считать лишь вынужденным решением проблемы, свалка должна располагаться на расстояние не менее 1 км от застроенной части города.

Улучшенным в гигиеническом отношении вариантом можно считать принятый в США так называемый «Sanitary land fill» - способ, получивший в последующем распространение и в других странах мира. Доставленный мусор сваливают в вырытые зара­нее канавы, затем его уплотняют (трамбуют) и засыпают слоем земли толщиной 70-80 см.

Однако и этот улучшенный вариант окончательного удале­ния и обезвреживания отходов имеет определенные недостатки. Прежде всего с каждым годом увеличивается количество твердых отходов, так что для удаления мусора с каждым годом требуются все большие территории.

С гигиенической точки зрения последний способ обработки мусора можно считать удовлетворительным. В случае необходи­мости им можно пользоваться и на застроенной городской тер­ритории. Преимущество способа состоит в том, что его можно применить в любой местности, кроме того, за счет заполнения отходами оврагов и ям восстановленные земельные участки мо­гут быть использованы для различных целей. Недостатком его является необходимость довольно больших территорий, а обез­вреживание отходов все же неполное. Кроме того, нельзя исполь­зовать органические вещества, необходимые сельскому хо­зяйству.

Сжигание мусора с гигиенической точки зрения является наиболее приемлемым, по­этому оно получило широкое распространение во всем мире. Су­щественно улучшился и процесс сжигания; с каждым годом строятся все более совершенные печи для сжигания мусора.

Первые мусоросжигательные заводы с их невысокими труба­ми сильно загрязняли воздух, в который попадало значительное количество пыли и пепла (до13мг/м3). Современные мусоро­сжигательные заводы оснащены специальным оборудованием, пригодным для сжигания не только обычных отходов, но и отходов поливинилхлорида и прочих синтетических материалов (пластмасс). Трубы новых заводов более высокие и оснащены электрическими пылеулавливающими фильтрами. Такие заводы можно размещать и на застроенной городской территории. Этот способ обезвреживания отходов позволяет сократить расходы на транспортировку отходов и дает значительный экономичес­кий эффект.

Недостатком этого способа является то, что строительство современных мусоросжигательных заводов связано со значитель­ными капиталовложениями. Кроме того, эксплуатационные рас­ходы также довольно высоки. Деятельность мусоросжигатель­ных заводов экономична лишь в крупных городах с плотной застройкой (с населением не менее 400-600 тыс.). В таких городах нет условий для обезвреживания отходов другими спо­собами и сжигание отходов является единственным приемлемым способом.

Местные установки для сжигания мусора оправданы на предприятиях, выпускающих пластмассовые изделия, в учреж­дениях, где отходы инфицированы и подлежат сжиганию на мес­те (больницы, некоторые научно-исследовательские учрежде­ния и т. д.).

4.6. Удаление радиоактивных отходов.

Любой вид радиоактивных отхо­дов подлежит особой обработке и обезвреживанию.

В мирное время радиоактивные отходы образуются лишь на предприятиях, вырабатывающих радиоактивные вещества и использующих их в своей работе (атомные реакторы, обслужи­вающие их предприятия и т.д.). Небольшое количество радио­активных отходов образуется в лабораториях радиоактивных изотопов некоторых научно-исследовательских учреждений, в лечебных учреждениях (радиотерапевтические отделения, лаборатории радиоактивных изотопов и т. д.), а также на некото­рых промышленных и сельскохозяйственных предприятиях, работающих с радиоактивными веществами.

Поскольку радиоактивные вещества ионизируют то, с чем соприкасаются, в том числе и организм человека, их практически невозможно устранить, и в силу своего кумулирующего действия они намного более опасны, чем обычные отходы.

В настоящее время существуют два способа удаления радио­активных отходов: радиоактивные вещества, обладающие невы­сокой активностью, многократно разбавляют и выбрасывают в окружающую среду (например, сточные воды, загрязненные низкоактивными веществами с коротким периодом полураспада, спускают в канализационную сеть; газообразные радиоактивные вещества выпускают через высокие трубы в воздух и т. д.). Для обезвреживания высокоактивных радиоизотопных отходов с длительным периодом полураспада этот способ уже не годится. Эти радиоактивные вещества сначала концентрируют, затем помещают в специальные хранилища. При этом необходимо по­заботиться, чтобы радиоактивные отходы не просачивались в окружающую среду (в почву, поверхностные водоемы, воздух и т.д.).

Радиоактивные отходы хранят в погруженных в землю спе­циальных емкостях (контейнеры) или в глубоких железобетон­ных колодцах (шахты). Поскольку почву и подземные воды не­обходимо максимально защитить от радиоактивного загрязне­ния, стенки колодца должны быть абсолютно герметичными. Несмотря на все принятые меры предосторожности, надо посто­янно осуществлять радиоактивный контроль за почвой и под­земными водами.

Существуют нормативы, четко определяющие допустимые дозы радиоактивных отходов, спускаемых в канализацию.

Заключение

В данной работе были получены довольно подробные сведения о многих видах загрязнения почвы. Рассмотрены их негативные воздействия на почву, а также зоны нашей страны, подверженные загрязнению. Получены также данные по мелиоративным мероприятиям, по орошению и осушению почв. Мы выяснили, что при неумеренном орошении и высоком уровне грунтовых вод появляется опасность вторичного засоления почвы.

Что касается видов загрязнения, мы узнали, как обстоит дело с кислотными дождями в России, и как они образуются (из чего и какими реакциями); какие места могут подвергнуться эрозии и подвергаются загрязнению нефтепродуктами и какие области России нужно защищать от них.

Из области сельского хозяйства были рассмотрены предельно допустимые концентрации удобрений, а также вред от злоупотребления ими. Получены данные по различным видам пестицидов и вредным последствиям после их использования.

Что касается твердых, жидких и радиоактивных отходов, были представлены возможные способы их утилизации.

Выяснено также, что почва играет определенную роль в распространении различных заболеваний. Некоторые бактерии сохраняются в почве долгое время.

Полученная информация дает читателю разнообразные сведения о почве и о процессах, происходящих на ее поверхности. Если мы хотим содержать нашу почву в порядке, нужно соблюдать хотя бы элементарные мероприятия по ее очистке.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Разумихин Н.В. Реализация продовольственной программы СССР и охрана окружающей среды, 1986.

2. Ленин В.И. Полное собрание сочинений, т. 42, с. 150.

3. Маркс К., Энгельс Ф. Полн. собр. соч., т. 23, с.191.

4. «ХХ век: последние 10 лет». Москва: А/О Издательская группа «Прогресс», 1992.

5. «Химия и общество». Москва: Мир, 1995.

6. Бакач Тибор. Охрана окружающей среды, 1980.

7. “Экология и жизнь”. Весна 1(9) 1999.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «ОМСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра «Промышленная экология и безопасность»

«Проблемы загрязнения почв тяжелыми металлами и возможные пути их решения»

Выполнил:

Фомин А., Мельников Д., Ламажап А.

студенты гр. ТБ-161

Проверил:

Холкин Е.Г., к.т.н

  • Введение
  • Заключение
  • Список литературы
  • Введение
  • Почва является бесценным природным богатством, обеспечивающим человека необходимыми продовольственными ресурсами. Ничто не может заменить почвенный покров: без этого колоссального природного объекта невозможна жизнь на земле. Вместе с тем сегодня можно наблюдать неправильное использование почвы, что приводит к росту её загрязнения и, как следствие, снижению её плодородных свойств. Уже сейчас человечество должно серьёзно задуматься над проблемой загрязнения почвы и принять необходимые меры по её защите.
  • Почва является индикатором общей техногенной обстановки. Загрязнения поступают в почву с атмосферными осадками, поверхностными отходами. Также они вносятся в почвенный слой почвенными породами и подземными водами. К группе тяжелых металлов относятся все цветные металлы с плотностью, превышающей плотность железа. Парадокс этих элементов состоит в том, что в определенных количествах они необходимы для обеспечения нормальной жизнедеятельности растений и организмов.
  • Но их избыток может привести к тяжелым заболеваниям и даже гибели. Пищевой круговорот становится причиной того, что вредные соединения попадают в организм человека и часто наносят огромный вред здоровью. Источники загрязнения тяжелыми металлами -- это промышленные предприятия.
  • Очень важна охрана почв. Постоянный контроль и мониторинг не позволяет выращивать сельскохозяйственную продукцию и вести выпас скота на загрязненных землях.
  • Цель работы - рассмотреть проблемы загрязнения почв тяжелыми металлами и возможные пути их решения.
  • 1. Загрязнение почв тяжелыми металлами
  • Тяжелые металлы (ТМ) уже сейчас занимают второе место по степени опасности, уступая пестицидам и значительно опережая такие широко известные загрязнители, как двуокись углерода и серы. В перспективе они могут стать более опасными, чем отходы атомных электростанций и твердые отходы. Загрязнение ТМ связано с их широким использованием в промышленном производстве. В связи с несовершенными системами очистки ТМ попадают в окружающую среду, в том числе и в почву, загрязняя и отравляя ее. ТМ относятся к особым загрязняющим веществам, наблюдения за которыми обязательны во всех средах .
  • Почва является основной средой, в которую попадают ТМ, в том числе из атмосферы и водной среды. Она же служит источником вторичного загрязнения приземного воздуха и вод, попадающих из нее в Мировой океан.
  • Из почвы ТМ усваиваются растениями, которые затем попадают в пищу.
  • Термин «тяжелые металлы», характеризующий широкую группу загрязняющих веществ, получил в последнее время значительное распространение. В различных научных и прикладных работах авторы по-разному трактуют значение этого понятия. В связи с этим количество элементов, относимых к группе тяжелых металлов, изменяется в широких пределах. В качестве критериев принадлежности используются многочисленные характеристики: атомная масса, плотность, токсичность, распространенность в природной среде, степень вовлеченности в природные и техногенные циклы.
  • В работах, посвященных проблемам загрязнения окружающей природной среды и экологического мониторинга, на сегодняшний день к тяжелым металлам относят более 40 элементов периодической системы Д.И. Менделеева с атомной массой свыше 40 атомных единиц: V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Cd, Sn, Hg, Pb, Bi и др. По классификации Н. Реймерса, тяжелыми следует считать металлы с плотностью более 8 г/см3. При этом немаловажную роль в категорировании тяжелых металлов играют следующие условия: их высокая токсичность для живых организмов в относительно низких концентрациях, а также способность к биоаккумуляции и биомагнификации. Практически все металлы, попадающие под это определение (за исключением свинца, ртути, кадмия и висмута, биологическая роль которых на настоящий момент не ясна), активно участвуют в биологических процессах, входят в состав многих ферментов .
  • Самыми мощными поставщиками отходов, обогащенных металлами, являются предприятия по выплавке цветных металлов (алюминиевые, глиноземные, медно-цинковые, свинцово-плавильные, никелевые, титаномагниевые, ртутные и др.), а также по переработке цветных металлов (радиотехнические, электротехнические, приборостроительные, гальванические и пр.).
  • В пыли металлургических производств, заводов по переработке руд концентрация Pb, Zn, Bi, Sn может быть повышена по сравнению с литосферой на несколько порядков (до 10-12), концентрация Cd, V, Sb - в десятки тысяч раз, Cd, Mo, Pb, Sn, Zn, Bi, Ag - в сотни раз. Отходы предприятий цветной металлургии, заводов лакокрасочной промышленности и железобетонных конструкций обогащены ртутью. В пыли машиностроительных заводов повышена концентрация W, Cd, Pb (табл. 1).
  • Таблица 1. Основные техногенные источники тяжелых металлов
    • Под влиянием обогащенных металлами выбросов формируются ареалы загрязнения ландшафта преимущественно на региональном и локальном уровнях. Влияние предприятий энергетики на загрязнение окружающей среды обусловлено не концентрацией металлов в отходах, а их огромным количеством. Масса отходов, например, в промышленных центрах, превышает их суммарное количество, поступающее от всех других источников загрязнения. С выхлопными газами автомобилей в окружающую среду выбрасывается значительное количество Pb, которое превышает его поступление с отходами металлургических предприятий.
    • Пахотные почвы загрязняются такими элементами как Hg, As, Pb, Cu, Sn, Bi, которые попадают в почву в составе ядохимикатов, биоцидов, стимуляторов роста растений, структурообразователей. Нетрадиционные удобрения, изготовляемые из различных отходов, часто содержат большой набор загрязняющих веществ с высокими концентрациями. Из традиционных минеральных удобрений фосфорные удобрения содержат примеси Mn, Zn, Ni, Cr, Pb, Cu, Cd .
    • Распределение в ландшафте металлов, поступивших в атмосферу из техногенных источников, определяется расстоянием от источника загрязнения, климатическими условиями (сила и направление ветров), рельефом местности, технологическими факторами (состояние отходов, способ поступления отходов в окружающую среду, высота труб предприятий).
    • Рассеивание ТМ зависит от высоты источника выбросов в атмосферу. Согласно расчетам М.Е. Берлянда, при высоких дымовых трубах значительная концентрация выбросов создается в приземном слое атмосферы на расстоянии 10-40 высот трубы. Вокруг таких источников загрязнения выделяются 6 зон (табл. 2). Площадь воздействия отдельных промышленных предприятий на прилегающую территорию может достигать 1000 км2 .
    • Таблица 2. Зоны загрязнения почв вокруг точечных источников загрязнения
    • Расстояние от источника загрязнения в км

      Превышение содержания ТМ по отношению к фоновому

      Охранная зона предприятия

      • Зоны загрязнения почв и их размер тесно связаны с векторами господствующих ветров. Рельеф, растительность, городские постройки могут изменять направление и скорость движения приземного слоя воздуха. Аналогично зонам загрязнения почв можно выделить и зоны загрязнения растительного покрова.
      • 2. Миграция тяжелых металлов в почвенном профиле
      • Аккумуляция основной части загрязняющих веществ наблюдается преимущественно в гумусово-аккумулятивном почвенном горизонте, где они связываются алюмосиликатами, несиликатными минералами, органическими веществами за счет различных реакций взаимодействия. Состав и количество удерживаемых в почве элементов зависят от содержания и состава гумуса, кислотно-основных и окислительно-восстановительных условий, сорбционной способности, интенсивности биологического поглощения. Часть тяжелых металлов удерживается этими компонентами прочно и не только не участвует в миграции по почвенному профилю, но и не представляет опасности для живых организмов. Отрицательные экологические последствия загрязнения почв связаны с подвижными соединениями металлов .
      • В пределах почвенного профиля техногенный поток веществ встречает ряд почвенно-геохимических барьеров. К ним относятся карбонатные, гипсовые, иллювиальные горизонты (иллювиально-железисто-гумусовые). Часть высокотоксичных элементов может переходить в труднодоступные для растений соединения, другие элементы, мобильные в данной почвенно-геохимической обстановке, могут мигрировать в почвенной толще, представляя потенциальную опасность для биоты. Подвижность элементов в значительной степени зависит от кислотно-основных и окислительно-восстановительных условий в почвах. В нейтральных почвах подвижны соединения Zn, V, As, Se, которые могут выщелачиваться при сезонном промачивании почв.
      • Накопление подвижных, особо опасных для организмов соединений элементов зависит от водного и воздушного режимов почв: наименьшая аккумуляция их наблюдается в водопроницаемых почвах промывного режима, увеличивается она в почвах с непромывным режимом и максимальна в почвах с выпотным режимом. При испарительной концентрации и щелочной реакции в почве могут накапливаться Se, As, V в легкодоступной форме, а в условиях восстановительной среды - Hg в виде метилированных соединений.
      • Однако следует иметь в виду, что в условиях промывного режима потенциальная подвижность металлов реализуется, и они могут быть вынесены за пределы почвенного профиля, являясь источниками вторичного загрязнения подземных вод.
      • В кислых почвах с преобладанием окислительных условий (почвы подзолистого ряда, хорошо дренированные) такие тяжелые металлы, как Cd и Hg, образуют легкоподвижные формы. Напротив, Pb, As, Se образуют малоподвижные соединения, способные накапливаться в гумусовых и иллювиальных горизонтах и негативно влиять на состояние почвенной биоты. Если в составе загрязняющих веществ присутствует S, в восстановительных условиях создается вторичная сероводородная среда и многие металлы образуют нерастворимые или слаборастворимые сульфиды.
      • В заболоченных почвах Mo, V, As, Se присутствуют в малоподвижных формах. Значительная часть элементов в кислых заболоченных почвах присутствует в относительно подвижных и опасных для живого вещества формах; таковы соединения Pb, Cr, Ni, Co, Cu, Zn, Cd и Hg. В слабокислых и нейтральных почвах с хорошей аэрацией образуются труднорастворимые соединения Pb, особенно при известковании. В нейтральных почвах подвижны соединения Zn, V, As, Se, а Cd и Hg могут задерживаться в гумусовом и иллювиальных горизонтах. По мере возрастания щелочности опасность загрязнения почв перечисленными элементами увеличивается .
      • 3. Направления борьбы с загрязнением почв тяжелыми металлами
      • 3.1 Проведение почвенного мониторинга состояния почвы
      • Среди контролируемых показателей состояния почв различают две группы: педохимические и биохимические. К педохимическим показателям относят те свойства почв, изменение которых может быть вызвано загрязняющими веществами и которые могут отрицательно влиять на живые организмы. К педохимическим относятся показатели важнейших химических свойств почв: гумусного состояния, кислотно-основных и катионнообменных свойств, в отдельных случаях окислительно-восстановительных свойств почв.
      • К биохимическим относят показатели, характеризующие аккумуляцию в почвах загрязняющих веществ и их непосредственного негативного влияния на живые организмы. К группе биохимических показателей относятся: 1) общее содержание загрязняющих веществ, 2) содержание соединений загрязняющих веществ, обладающих реальной и потенциальной подвижностью .
      • Показатели общего (валового) содержания контролируемых элементов как природного, так и техногенного происхождения характеризуют их запас в почвах (табл. 3). Определение общего содержания химических элементов в почвах трудоемко и требует полного разложения алюмосиликатов, удерживающих значительную часть соединений, особенно в незагрязненных почвах (сплавление пробы, разложение кислотами с участием плавиковой кислоты).
      • При оценке состояния загрязненных почв общее содержание химических элементов является показателем менее информативным. Существует достаточно много данных о природном уровне общего содержания тяжелых металлов (Hg, Pb, Cd, As, Zn, Cu и др.) в почвах мира, в верхних горизонтах разных типов почв России. Кроме того, установлены особенности регионального фонового содержания многих элементов, а также выявлены закономерности изменения их количества в зависимости от гранулометрического состава, гумусированности почв, реакции среды, содержания элементов в почвообразующих породах и других факторов.
      • Таблица 3. Фоновое содержание валовых форм соединений тяжелых металлов в почвах (мг/кг)
      • Элемент, мг/кг

        Дерново-подзолистые песчаные и супесчаные

        Дерново-подзолистые суглинистые и глинистые

        Серые лесные

        Черноземы

        Каштановые

        • С расширением экологического контроля состояния почв широко стали применять методы определения содержания кислоторастворимых (1 н. HCI, 1 н. HNO3) соединений ТМ. Нередко им присваивают название «условноваловое содержание ТМ». Применение в качестве реагентов разбавленных растворов минеральных кислот не обеспечивает полного разложения пробы, но позволяет перевести в раствор основную часть соединений химических элементов техногенного происхождения.
        • К подвижным формам ТМ относят элементы и соединения почвенного раствора и твердой фазы почвы, которые находятся в состоянии динамического равновесия с химическими элементами почвенного раствора. Для определения подвижных ТМ в почвах в качестве экстрагента применяют слабо солевые растворы, с ионной силой, близкой к ионной силе природных почвенных растворов: (0,01-0,05 М СаCI2, Ca(NO3)2, KNO3). Содержание потенциально подвижных соединений контролируемых элементов в почвах определяют в вытяжке 1 н. NH4CH3COO при разных значениях рН. Используют этот экстрагент и с добавлением комплексообразователей (0,02-1,0 М ЭДТА) .
        • Для анализа чаще всего отбирают верхние слои почвы (0-10 см), иногда анализируется распределение загрязняющих веществ в почвенном профиле. Верхние горизонты играют роль геохимического барьера на пути потока веществ, поступающих из атмосферы. В условиях промывного водного режима загрязняющие вещества могут проникать вглубь и накапливаться в иллювиальных горизонтах, которые также служат геохимическими барьерами.
        • тяжелый метал рекультивация земля
        • 3.2 Рекультивация земель, загрязненных тяжелыми металлами
        • Загрязнение почв тяжелыми металлами приводит к образованию кислой или щелочной реакции почвенной среды, снижению обменной емкости катионов, потери питательных веществ, к изменению плотности, пористости, отражательной способности, к развитию эрозии, дефляции, к сокращению видового состава растительности, ее угнетению или к полной гибели.
        • Прежде, чем начать рекультивацию таких земель необходимо установить источник и причины загрязнения, провести мероприятия по снижению выбросов, локализации или ликвидации источника загрязнения. Только при таких условиях может быть достигнута высокая эффективность рекультивационных работ.
        • Ориентиром для разработки состава работ по рекультивации земель в первую очередь служит приоритетное вещество, вызывающее ухудшение экологического состояния почв и качество сельскохозяйственной продукции, а ожидаемая подвижность других опасных веществ должна регулируется специальными или комплексными мероприятиями.
        • Рекультивация земель, загрязненных тяжелыми металлами, осуществляется с использованием следующих способов:
        • 1) Культивирование устойчивых к загрязнению культурных и дикорастущих растений. На загрязненных землях сельскохозяйственного назначения проводится реорганизация и переориентация сельскохозяйственного производства за счет введения новой структуры растениеводства, обеспечивающей получение качественной продукции. В зонах с чрезвычайной экологической ситуацией, имеющих многоэлементный набор загрязнителей, целесообразно переходить с производства овощей на зерно-кормовые севообороты и развитие животноводства с особым режимом содержания животных, например, со стойловым и кормлением разбавленными кормами или с выгоном на загрязненные и чистые луга .
        • Переход на другие сельскохозяйственные культуры определяется различной их отзывчивостью на уровень содержания металлов в почве, причем эта отзывчивость у растений проявляется как в зависимости от вида, сорта, так и по распределению металлов в вегетативных и регенеративных органах. Различное накопление тяжелых металлов в растениях вызвано существованием биологических барьеров в системе: почва - корень - стебель (листья) - регенеративный орган. Обычно наибольшее накопление тяжелых металлов наблюдается в вегетативных органах, наименьшее - в регенеративных, например, при содержании в почве 800мг/кг свинца в соломе ржи обнаружено 9 мг/кг, а в зерне - 0,9мг/кг. Отзывчивость растений на отдельные металлы можно проследить на примере кадмия, наиболее чувствительными к избытку кадмия являются соя, салат, шпинат, а устойчивыми - рис, томат, капуста.
        • С учетом конкретных условий на почвах, загрязненных тяжелыми металлами, можно выращивать следующие устойчивые культуры: зерновые колосовые, злаковые травы, картофель, капусту, томаты, хлопчатник, сахарную свеклу.
        • 2) Рекультивация почв с помощью растений (фиторекультивация), способных накапливать тяжелые металлы в вегетативных органах. Установлено, что дерево за вегетационный период вдоль автомобильной дороги способно накапливать в себе количество свинца, равное его содержанию в 130 кг бензина, поэтому в населенных пунктах с загрязненными районами листовой опад целесообразно собирать и утилизировать. Для очистки почв от цинка, свинца и кадмия необходимо выращивать большой горец, от свинца и хрома - горчицу, от никеля - гречиху и т.д. (табл. 5), при загрязнение радиоактивными изотопами можно использовать вику, горох, люцерну, махорку.
        • 3) Регулирование подвижности тяжелых металлов в почве. Поглощение тяжелых металлов растениями зависит от содержания их подвижных форм в почве. Существование подвижных форм определяется свойствами и плодородием почв, биогеохимическими процессами, интенсивностью и объемами поступления тяжелых металлов в почву, выносом растениями. Поведение тяжелых металлов в почве и способы управления их содержанием вытекают из теории геохимических барьеров, а рекультивация загрязненных почв сводится к созданию дополнительных барьеров, управлению существующими барьерами или к ослаблению некоторых из них.
        • Почвы, тяжелые по механическому составу и имеющие высокое плодородие, содержат меньше подвижных форм тяжелых металлов, чем почвы легкие и малопродуктивные. Многие из металлов, относящиеся к первому классу опасности, в нейтральной почвенной среде образуют трудно растворимые соединения, а в кислой - легко растворимые. Кадмий наиболее подвижен в кислой среде и слабо подвижен в нейтральной и щелочной среде. К подвижным в кислой среде относятся химическим соединениям, содержащие катионы Zn,Сu, Pb, Cd, Sr, Mn, Ni, Coи др. К подвижным в нейтральной и щелочной среде - Mo, Cr, As, V, Se .
        • В равных условиях наименьшей растворимостью обладают фосфаты и сульфиды тяжелых металлов, из карбонатных соединений меньшую растворимость имеют соединения ртути, свинца и кадмия. Гидроксиды тяжелых металлов образуют трудно растворимые формы в слабокислых и нейтральных средах, исключением являются гидроксид Fe (рН = 2,5) и Al (рН = 4,1).
        • На подвижность оказывают влияние органические вещества с малой молекулярной массой, фульвокислоты и гуминовые кислоты, так количество подвижной меди изменяется от 4,5 мг/кг до 2,0 мг/кг при изменении содержания гумуса в почве от 0,6 до 6,5%. Адсорбция свинца почвой при изменении содержания в ней гумуса от 2,5% до 7,0% возрастает с 5 мкг/кг до 20 мкг/кг.
        • Внесение в почву жидкого навоза и слабо разложившихся органических веществ повышает подвижность тяжелых металлов за счет образования низкомолекулярных водорастворимых комплексов. Поступление тяжелых металлов в растения по степени их подвижности: кадмий - свинец - цинк - медь.
        • Для регулирования подвижности соединений тяжелых металлов в почве используют известкование, гипсование, внесение органических и минеральных удобрений, землевание (внесение глины или песка).
        • При рекультивации земель, загрязненных тяжелыми металлами, значительное внимание уделяется поддержанию и образованию в почве труднорастворимых соединений. Для этого в дополнение к приведенным способам используют искусственные и природные адсорбенты. К природным относятся торф, мох, черноземные почвы, сапропель, бентонитовые и бентонитоподобные глины, глауконитовые пески, клиноптилолиты, опоки, трепелы, диатомиты. Искусственные адсорбенты создаются в результате активации или смешения природных адсорбентов, например, активированный уголь, алюмосиликатные и железо-алюмосиликатные адсорбенты, углеалюмогели, адсорбент «СОРБЭКС», ионообменные смолы, полистирол.
        • Избирательная способность адсорбентов может быть ориентирована на определенные металлы, например, при использование адсорбента «МЕРКАПТО-8-ТРИАЗИН» кадмий, свинец, ртуть и никель переходят в недоступные для растений соединения (опыт Японии, Франции, Германии и других стран), применение клиноптололита значительно снижает поступление свинца, хрома, кадмия, меди, цинка в растения и т.д..
        • 4) Регулирование соотношений химических элементов в почве. В основе этого способа лежит антагонизм и синергизм химических элементов, т.е. когда один элемент препятствует или способствует поступлению другого в растение, например, цинк препятствует поступлению ртути, а избыток фосфора приводит к снижению токсичности цинка, кадмия, свинца и меди, присутствие кальция может создать для одних металлов антагонистические, а для других синергические условия, в плодородной почве цинк и кадмий противостоят закреплению меди и свинца, а в малоплодородной почве процесс может развиваться в обратном направлении.
        • 5) Создание рекультивационного слоя, замена или разбавление загрязненного слоя почвы может проводиться по многослойной схеме, а также путем нанесения одного слоя почвы на предварительно экранированную или неэкранированную загрязненную поверхность. Разбавление загрязненного слоя проводится землеванием чистой почвы с последующим смешением, разбавление может также проводится с помощью глубокой вспашки, когда верхний загрязненный слой перемешивается с чистым нижним слоем. Применяют снятие загрязненного слоя и его переработку, или снятие загрязненной почвы с последующей очисткой и возвращением обратно, но обычно такие операции проводят на небольших участках, они являются дорогостоящим способом рекультивации .
        • Для рекультивации больших территорий, включающих селитебные и рекреационные зоны населенных пунктов, сельскохозяйственные угодий, испытывающие длительное загрязнение, можно применить следующую комплексную схему:
        • - существенное сокращение выбросов предприятиями (технологический барьер);
        • - строгое дозирование химических средств защиты растений, оптимальное регулирование питательного и кислотного режимов почвы (технологический барьер);
        • - управление водными миграционными потоками за счет организации поверхностного стока, создания ливневой канализации, дренажных с последующей очисткой стоков (механический барьер).
        • - усиление сорбционного барьера почвенного слоя, необходимого для существенного уменьшения количества подвижных соединений тяжелых металлов, которые поступают в растения и загрязняют продукцию, в тоже время общее количество металлов в почве может не только не уменьшается, но даже расти за счет уменьшения подвижности.
        • - дополнительно к этому - минимизация инфильтрационной составляющей водного режима почвенного слоя в условиях полива зеленых насаждений, газонов, огородных, сельскохозяйственных и других культур, т.е. выполнение мероприятий, направленных, с одной стороны, на некоторое ослабление гидрофизического барьера, но с другой - необходимых для закрепления эффекта от усиления сорбционного барьера.
        • Уменьшение количества подвижных соединений при внесении сорбента фактически ослабляет перераспределение общего содержания металлов по почвенному профилю под действием нисходящих токов влаги и приводит к избыточной аккумуляции металлов в самом верхнем слое. Ослабление гидрофизического барьера путем регулируемой инфильтрации способствует перераспределению металлов, так как происходит разбавление почвенного раствора и одновременное уменьшение трудно растворимых соединений за счет десорбции.
        • Такое мероприятие можно считать возможным, поскольку при значительном загрязнении почв и грунтовых вод токсичными веществами необходимо создавать инженерно-экологическую постоянно действующую систему управления потоками вещества в компонентах: почва - грунтовые воды. Подобная система обеспечивает рекультивацию загрязненных почв и грунтовых вод, а также служит барьером для поступления техногенных продуктов в реки и другие места разгрузки подземных стоков. Для количественного обоснования этих мероприятий используются математические модели передвижения влаги, а также тяжелых металлов с учетом их сорбции и отбора корнями растений.
        • Заключение
        • Актуальность проблемы воздействия тяжелых металлов на почвенные микроорганизмы определяется тем, что именно в почве сосредоточена большая часть всех процессов минерализации органических остатков, обеспечивающих сопряжение биологического и геологического круговорота. Почва является экологическим узлом связей биосферы, в котором наиболее интенсивно протекает взаимодействие живой и неживой материи. На почве замыкаются процессы обмена веществ между земной корой, гидросферой, атмосферой, обитающими на суше организмами, важное место среди которых занимают почвенные микроорганизмы.
        • Возрастающее загрязнение окружающей среды тяжелыми металлами (TM) представляет угрозу для естественных бикомплексов и агроценозов. Аккумулирующиеся в почве TM извлекаются из нее растениями и по трофическим цепям в возрастающих концентрациях поступают в организм животных. Растения аккумулируют TM не только из почвы, но и из воздуха. В зависимости от вида растений и экологической ситуации у них доминирует влияние загрязнения почвы или воздуха. Поэтому концентрация TM в растениях может превышать или находится ниже их содержания в почве. Особенно много свинца из воздуха (до 95 %) поглощают листовые овощи.
        • На придорожных территориях значительно загрязняет тяжелыми металлами почву автотранспорт, особенно свинцом. При концентрации его в почве 50 мг/кг примерно десятую часть этого количества накапливают травянистые растения. Также растения активно поглощают цинк, количество которого в них может в несколько раз превосходить его содержание в почве.
        • Тяжелые металлы существенным образом влияют на численность, видовой состав и жизнедеятельность почвенной микробиоты. Они ингибируют процессы минерализации и синтеза различных веществ в почвах, подавляют дыхание почвенных микроорганизмов, вызывают микробостатический эффект и могут выступать как мутагенный фактор.
        • Список литературы
        • 1. Вредные химические вещества: неорганические соединения элементов I-IV групп / под ред. В.А. Филова. - Л. : Химия, 2008. - 611 с.
        • 2. Джувеликян Х. А., Щеглов Д. И., Горубнова Н. С. Загрязнение почв тяжелыми металлами. Способы контроля и нормирования загрязненных почв. Воронеж: Издательско-полиграфический центр Воронежского государственного университета, 2009. - 21 с.
        • 3. ГН 2.1.7.020-94. Ориентировочно допустимые концентрации (ОДК) тяжелых металлов и мышьяка в почвах. Дополнение № 1 к перечню ПДК и ОДК №6229-91. - М. : Госкомсаниздат, 1995.
        • 4. ГОСТ 17.4.2.03-86 (СТ СЭВ 5299-85). Охрана природы. Почвы. Паспорт почв. - М. : Госкомсаниздат, 1987.
        • 5. ГОСТ 17.4.3.01-83 (СТ СЭВ 3847-82). Охрана природы. Почвы. Общие требования к отбору проб. - М. : Госкомсаниздат, 1984.
        • 6. ГОСТ 17.4.3.06-86 (СТ СЭВ 5301-85). Охрана природы. Почвы. Общие требования к классификации почв по влиянию на них химических загрязняющих веществ. - М. : Госкомсаниздат, 1987.
        • 7. Методические указания по определению тяжелых металлов в почвах сельхозугодий и продукции растениеводства. - М. : ЦИНАО, 1992. - 60 с.
        • 8. Мотузова Г.В. Экологический мониторинг почв / Г.В. Мотузова, О.С. Безуглова. - М. : Академический Проект; Гаудеамус, 2007. - 237 с.
        • 9. Перельман А.И. Геохимия ландшафта / А.И. Перельман, Н.С. Касимов. - М. : Астрея-2000, 1999. - 768 с.
        • 10. Реймерс Н.Ф. Природопользование: слов.-справ. / Н.Ф. Реймерс. - М. : Мысль, 1990. - 638 с.
        • Размещено на Allbest.ru
        ...

Подобные документы

    Источники, характер и степень загрязнения урбанозёмов и почв. Районы г. Челябинска, подверженные наиболее интенсивному загрязнению. Влияние загрязнения почв тяжелыми металлами на растительность. Формы нахождения тяжелых металлов в выбросах и почве.

    дипломная работа , добавлен 02.10.2015

    Общая характеристика тяжёлых металлов, формы их нахождения в окружающей среде. Источники поступления тяжелых металлов в окружающую среду. Теория и методы биоиндикации. Биологические объекты как индикаторы загрязнения окружающей среды тяжелыми металлами.

    курсовая работа , добавлен 27.09.2013

    Источники поступления тяжелых металлов в водные экосистемы. Токсическое действие тяжелых металлов на человека. Оценка степени загрязнения поверхностных вод водоемов, расположенных на территории г. Гомеля, свинцом, медью, хромом, цинком, никелем.

    дипломная работа , добавлен 08.06.2013

    Рассмотрение биохимического метода очистки почв, его виды: биовентилирование, фиторемедиация (очистка с помощью зелёных растений), грибковые технологии, использование ила. Основные причины загрязнения тяжелыми металлами сельскохозяйственных земель.

    курсовая работа , добавлен 16.05.2014

    Характеристика Тюменского района. Климатическая характеристика и географическое положение. Характеристика почвенного покрова. Характеристика растительного и животного мира. Обзор мероприятий по рекультивации загрязненного тяжелыми металлами участка.

    курсовая работа , добавлен 18.12.2014

    Типы и виды деградации пригородных почв, оценка степени деградации. Способы рекультивации загрязненных почв. Характеристика г. Ижевска как источника химического загрязнения почв. Технологические приёмы рекультивации почв, загрязнённых тяжёлыми металлами.

    курсовая работа , добавлен 11.06.2015

    Обзор источников техногенного загрязнения земель. Показатели и классы опасных веществ. Загрязнение почв радионуклидами и тяжелыми металлами. Уровни загрязнения территории Беларуси в результате катастрофы на Чернобыльской АЭС. Экологические проблемы почвы.

    курсовая работа , добавлен 08.12.2016

    Понятие тяжелых металлов, их биогеохимические свойства и формы нахождения в окружающей среде. Подвижность тяжелых металлов в почвах. Виды нормирования тяжелых металлов в почвах и растениях. Аэрогенный и гидрогенный способы загрязнения почв городов.

    курсовая работа , добавлен 10.07.2015

    дипломная работа , добавлен 23.09.2012

    Основные понятия и этапы рекультивации земель. Рекультивация полигонов твердых бытовых отходов. Схема процесса очистки почвы от нефтепродуктов с внесением нефтеокисляющих микроорганизмов. Рекультивация земель, загрязненных тяжелыми металлами, отвалов.


ФЕДЕРАЛЬНОЕ АГЕНТСТВО МОРСКОГО И РЕЧНОГО ТРАНСПОРТА
ФЕДЕРАЛЬНОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
МОРСКОЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
имени адмирала Г.И. Невельского

Кафедра защиты окружающей среды

РЕФЕРАТ
по дисциплине «Физико-химические процессы»

Последствия загрязнения почв тяжелыми металлами и радионуклидами.

Проверила преподаватель:
Фирсова Л.Ю.
Выполнил студент гр. ___
Ходанова С.В.

Владивосток 2012
СОДЕРЖАНИЕ

Введение
1 Тяжелые металлы в почвах





2 Радионуклиды в почвах. Радиоактивное загрязнение
Заключение
Список используемых источников

ВВЕДЕНИЕ

Почва - это не просто инертная среда, на поверхности которой осуществляется деятельность человека, а динамическая, развивающаяся система, включающая множество органических и неорганических компонентов, в которых имеется сеть полостей и пор, а в них, в свою очередь, содержатся газы и жидкости. Пространственное распределение этих компонентов определяет главные типы почв на земном шаре.
Кроме того, почвы содержат огромное число живых организмов, их называют биотой: от бактерий и грибов до червей и грызунов. Почва образуется на скальных родительских породах под совместным воздействием климата, растительности, почвенных организмов и времени. Поэтому изменение любого из этих факторов может привести к изменениям в почвах. Почвообразование - это длительный процесс: образование слоя почвы в 30 см занимает от 1000 до 10 000 лет. Следовательно, скорости почвообразования столь малы, что почву можно считать невозобновляемым ресурсом.
Почвенный покров Земли представляет собой важнейший компонент биосферы Земли. Именно почвенная оболочка определяет многие процессы, происходящие в биосфере. Важнейшее значение почв состоит в накоплении органического вещества, различных химических элементов, а также энергии. Почвенный покров выполняет функции биологического поглотителя, разрушителя и нейтрализатора различных загрязнений. Если это звено биосферы будет разрушено, то сложившееся функционирование биосферы необратимо нарушится. Именно поэтому чрезвычайно важно изучение глобального биохимического значения почвенного покрова, его современного состояния и изменения под влиянием антропогенной деятельности.

1 Тяжелые металлы в почвах

      Источники поступления тяжелых металлов в почву
К тяжелым металлам (ТМ) относят более 40 химических элементов периодической системы Д.И. Менделеева, масса атомов которых составляет свыше 50 атомных единиц массы (а. е. м.). Это Pb, Zn, Cd, Hg, Cu, Mo, Mn, Ni, Sn, Co и др. Сложившееся понятие «тяжелые металлы» не является строгим, т.к. к ТМ часто относят элементы-неметаллы, например As, Se, а иногда даже F, Be и другие элементы, атомная масса которых меньше 50 а.е.м.
Среди ТМ много микроэлементов, биологически важных для живых организмов. Они являются необходимыми и незаменимыми компонентами биокатализаторов и биорегуляторов важнейших физиологических процессов. Однако избыточное содержание ТМ в различных объектах биосферы оказывает угнетающее и даже токсическое действие на живые организмы.
Источники поступления ТМ в почву делятся на природные (выветривание горных пород и минералов, эрозионные процессы, вулканическая деятельность) и техногенные (добыча и переработка полезных ископаемых, сжигание топлива, влияние автотранспорта, сельского хозяйства и т.д.) Сельско-хозяйственные земли, помимо загрязнения через атмосферу, загрязняются ТМ еще и специфически, при применении пестицидов, минеральных и органических удобрений, известковании, использовании сточных вод. В последнее время, особое внимание ученые уделяют городским почвам. Последние испытывают значительный техногенный процесс, составной частью которого является загрязнение ТМ.
На поверхность почвы ТМ поступают в различных формах. Это оксиды и различные соли металлов, как растворимые, так и практически нерастворимые в воде (сульфиды, сульфаты, арсениты и др.). В составе выбросов предприятий по переработке руды и предприятий цветной металлургии - основного источника загрязнения окружающей среды ТМ - основная масса металлов (70-90 %) находится в форме оксидов.
Попадая на поверхность почв, ТМ могут либо накапливаться, либо рассеиваться в зависимости от характера геохимических барьеров, свойственных данной территории.
Большая часть ТМ, поступивших на поверхность почвы, закрепляется в верхних гумусовых горизонтах. ТМ сорбируются на поверхности почвенных частиц, связываются с органическим веществом почвы, в частности в виде элементно-органических соединений, аккумулируются в гидроксидах железа, входят в состав кристаллических решеток глинистых минералов, дают собственные минералы в результате изоморфного замещения, находятся в растворимом состоянии в почвенной влаге и газообразном состоянии в почвенном воздухе, являются составной частью почвенной биоты.
Степень подвижности ТМ зависит от геохимической обстановки и уровня техногенного воздействия. Тяжелый гранулометрический состав и высокое содержание органического вещества приводят к связыванию ТМ почвой. Рост значений рН усиливает сорбированность катионообразующих металлов (медь, цинк, никель, ртуть, свинец и др.) и увеличивает подвижность анионообразующих (молибден, хром, ванадий и пр.). Усиление окислительных условий увеличивает миграционную способность металлов. В итоге по способности связывать большинство ТМ, почвы образуют следующий ряд: серозем > чернозем > дерново-подзолистая почва.
      Загрязнения почв тяжелыми металлами
Загрязнение почв ТМ имеет сразу две отрицательные стороны. Во-первых, поступая по пищевым цепям из почвы в растения, а оттуда в организм животных и человека, ТМ вызывают у них серьезные заболевания. Росту заболеваемости населения и сокращению продолжительности жизни, а также к снижению количества и качества урожаев сельскохозяйственных растений и животноводческой продукции.
Во-вторых, накапливаясь в почве в больших количествах, ТМ способны изменять многие ее свойства. Прежде всего, изменения затрагивают биологические свойства почвы: снижается общая численность микроорганизмов, сужается их видовой состав (разнообразие), изменяется структура микробоценозов, падает интенсивность основных микробиологических процессов и активность почвенных ферментов и т.д. Сильное загрязнение ТМ приводит к изменению и более консервативных признаков почвы, таких как гумусное состояние, структура, pH среды и др. Результатом этого является частичная, а в ряде случаев и полная утрата почвенного плодородия.
      Природные и техногенные аномалии
В природе встречаются территории с недостаточным или избыточным содержанием в почвах ТМ. Аномальное содержание ТМ в почвах обусловлено двумя группами причин: биогеохимическими особенностями экосистем и влиянием техногенных потоков вещества. В первом случае, районы, где концентрация химических элементов выше или ниже оптимального для живых организмов уровня, называются природными геохимическими аномалиями или биогеохимическими провинциями. Здесь аномальное содержание элементов обусловлено естественными причинами – особенностями почвообразующих пород, почвообразовательного процесса, присутствием рудных аномалий. Во втором случае, территории называются техногенными геохимическими аномалиями. В зависимости от масштаба они делятся на глобальные, региональные и локальные.
Почва, в отличие от других компонентов природной среды, не только геохимически аккумулирует компоненты загрязнений, но и выступает как природный буфер, контролирующий перенос химических элементов и соединений в атмосферу, гидросферу и живое вещество.
Различные растения, животные и человек требуют для жизнедеятельности определенного состава почвы, воды. В местах геохимических аномалий происходит, усугубляясь, передача отклонений от нормы минерального состава по всей пищевой цепи. В результате нарушения минерального питания наблюдаются изменения видового состава фито-, зоо- и микробоценозов, заболевание дикорастущих форм растений, снижение количества и качества урожаев сельскохозяйственных растений и животноводческой продукции, рост заболеваемости населения и снижение продолжительности жизни.
Токсическое воздействие ТМ на биологические системы в первую очередь обусловлено тем, что они легко связываются с сульфгидрильными группами белков (в том числе и ферментов), подавляя их синтез и, тем самым, нарушая обмен веществ в организме.
Живые организмы выработали разнообразные механизмы устойчивости к ТМ: от восстановления ионов ТМ в менее токсичные соединения до активации систем ионного транспорта, осуществляющих эффективное и специфическое удаление токсических ионов из клетки во внешнюю среду.
Наиболее существенное последствие воздействия ТМ на живые организмы, проявляющееся на биогеоценотическом и биосферном уровнях организации живого вещества, заключается в блокировании процессов окисления органического вещества. Это приводит к снижению скорости его минерализации и накоплению в экосистемах. В то же время увеличение концентрации органического вещества вызывает связывание им ТМ, что временно снимает нагрузку с экосистемы. Снижение скорости разложения органического вещества за счет снижения численности организмов, их биомассы и интенсивности жизнедеятельности считают пассивной реакцией экосистем на загрязнение ТМ. Активное противостояние организмов антропогенным нагрузкам проявляется лишь в ходе прижизненной аккумуляции металлов в телах и скелетах. Ответственными за этот процесс являются наиболее устойчивые виды.
Устойчивость живых организмов, прежде всего растений, к повышенным концентрациям ТМ и их способность накапливать высокие концентрации металлов могут представлять большую опасность для здоровья людей, поскольку допускают проникновение загрязняющих веществ в пищевые цепи.
      Нормирование содержания тяжелых металлов в почве и очищение почв
Очень сложен вопрос нормирования содержания ТМ в почве. В основе его решения должно лежать признание полифункциональности почвы. В процессе нормирования почва может рассматриваться с различных позиций: как естественное природное тело, как среда обитания и субстрат для растений, животных и микроорганизмов, как объект и средство сельскохозяйственного и промышленного производства, как природный резервуар, содержащий патогенные микроорганизмы. Нормирование содержания ТМ в почве необходимо проводить на основе почвенно-экологических принципов, которые отрицают возможность нахождения единых значений для всех почв.
По вопросу санации почв, загрязненных ТМ, существует два основных подхода. Первый направлен на очищение почвы от ТМ. Очищение может производиться путем промывок, путем извлечения ТМ из почвы с помощью растений, путем удаления верхнего загрязненного слоя почвы и т.п. Второй подход основан на закреплении ТМ в почве, переводе их в нерастворимые в воде и недоступные живым организмам формы. Для этого предлагается внесение в почву органического вещества, фосфорных минеральных удобрений, ионообменных смол, природных цеолитов, бурого угля, известкование почвы и т.д. Однако любой способ закрепления ТМ в почве имеет свой срок действия. Рано или поздно часть ТМ снова начнет поступать в почвенный раствор, а оттуда в живые организмы.
    Радионуклиды в почвах. Радиоактивное загрязнение

В почвах присутствуют почти все известные в природе химические элементы, в том числе и радионуклиды.
Радионуклиды – химические элементы, способные к самопроизвольному распаду с образованием новых элементов, а также образованные изотопы любых химических элементов. Следствием ядерного распада является ионизирующая радиация в виде потока альфа-частиц (поток ядер гелия, протонов) и бета-частиц (поток электронов), нейтронов, гамма-излучение и рентгеновское излучение. Это явление получило название радиоактивность. Химические элементы, способные к самопроизвольному распаду называются радиоактивными. Наиболее употребляемый синоним ионизирующей радиации – радиоактивное излучение.
Ионизирующее излучение – поток заряженных или нейтральных частиц и электромагнитных квантов, взаимодействие которых со средой приводит к ионизации и возбуждению ее атомов и молекул. Ионизирующие излучения имеют электромагнитную (гамма- и рентгеновское излучения) и корпускулярную (альфа-излучение, бета-излучение, нейтронное излучение) природу.
Гамма-излучение – это электромагнитное излучение, обусловленное гамма-лучами (дискретными пучками или квантами, называемыми фотона-ми), если после альфа- или бета-распада ядро остается в возбужденном со-стоянии. Гамма-лучи в воздухе могут проходить значительные расстояния. Фотон гамма-лучей с высокой энергией может проходить сквозь тело человека. Интенсивное гамма-излучение может повредить не только кожу, но и внутренние органы. Защищают от этого излучения плотные и тяжелые материалы, железо, свинец. Гамма-излучение можно создавать искусственно в ускорителях зараженных частиц (микротрон), например, тормозное гамма-излучение быстрых электронов ускорителя при их попадании на мишень.
Рентгеновское излучение – аналогично гамма-излучению. Космическое рентгеновское излучение поглощается атмосферой. Рентгеновские лучи получают искусственно, они приходятся на нижнюю часть энергетического спектра электромагнитного излучения.
Радиоактивное излучение - естественный фактор в биосфере для всех живых организмов, да и сами живые организмы обладают определенной радиоактивностью. Среди биосферных объектов почвы обладают наиболее высокой естественной степенью радиоактивности. В этих условиях природа благоденствовала многие миллионы лет, разве что в исключительных случаях при геохимических аномалиях, связанных с месторождением радиоактивных пород, например, урановых руд.
Однако, в XX человечество столкнулось с радиоактивностью запредельно превышающей естественную, а следовательно и биологически анормальную. Первыми пострадавшими от избыточных доз радиации были великие ученые, открывшие радиоактивные элементы (радий, полоний) супруги Мария Склодовская-Кюри и Пьер Кюри. А затем: Хиросима и Нагасаки, испытания атомного и ядерного оружия, многие катастрофы, в том числе Чернобыльская и т.д.
Наиболее значимыми объектами биосферы, определяющими биологические функции всего живого являются почвы.
Радиоактивность почв обусловлена содержанием в них радионуклидов. Различают естественную и искусственную радиоактивность.
Естественная радиоактивность почв вызывается естественными радиоактивными изотопами, которые всегда в тех или иных количествах присутствуют в почвах и почвообразующих породах. Естественные радионуклиды подразделяют на 3 группы.
Первая группа включает радиоактивные элементы - элементы, все изотопы которых радиоактивны: уран (238
и т.д.................

Загрязнение почв тяжелыми металлами имеет разные источники:

  • 1. отходы металлообрабатывающей промышленности;
  • 2. промышленные выбросы;
  • 3. продукты сгорания топлива;
  • 4. автомобильные выхлопы отработанных газов;
  • 5. средства химизации сельского хозяйства

Загрязнение почв в результате, как природных факторов, так и главным образом антропогенных источников не только изменяет ход почвообразовательных процессов, что приводит к снижению урожая, ослабляет самоочищение почв от вредных организмов, но и оказывает прямое или косвенное (через растения, растительные или животные продукты питания) влияние. Тяжелые металлы, поступая из почвы в растения, передаваясь по цепям питания, оказывают токсическое действие на растения, животных и на здоровье человека.

Тяжёлые металлы по степени токсического действия на окружающую среду подразделяются на три класса опасности:1. As, Cd, Hg, Pb, Se, Zn, Ti;

  • 2. Co, Ni, Mo, Cu, So, Cr;
  • 3. Bar, V, W, Mn, Sr.

Влияние загрязнения на урожайность сельскохозяйственных культур и качество продукции.

Нарушения, происходящие в растительных организмах под действием избытка тяжёлых металлов, приводят к изменению урожайности и качества растениеводческой продукции (в первую очередь за счёт увеличения содержания самих металлов. Проведение мероприятий по санации загрязнённых тяжелыми металлами почв само по себе не может гарантировать получение высоких урожаев экологически безопасной сельскохозяйственной продукции. Подвижность тяжелых металлов и доступность их для растений в значительной степени контролируются такими свойствами почв как кислотно-щелочные условия, окислительно-восстановительные режимы, содержание гумуса, гранулометрический состав и связанная с ними емкость поглощения. Поэтому прежде чем переходить к разработке конкретных мероприятий по восстановлению плодородия загрязненных почв, необходимо определить критерии их классификации по опасности загрязнения тяжелых металлов, базирующиеся на совокупности физико-химических свойств. При высоких уровнях загрязнения почв тяжелыми металлами урожайность сельскохозяйственных культур резко падает.

В почвах токсичные уровни загрязняющих веществ медленно накапливаются, но зато долго в ней сохраняются, негативно влияя на экологическую обстановку целых регионов. Почвы загрязнённые тяжёлыми металлами и радионуклидами очистить практически невозможно. Пока известен единственный путь: засеять такие почвы быстрорастущими культурами, дающими большую зелёную массу; такие культуры извлекают из почвы токсичные элементы, а затем собранный урожай подлежит уничтожению. Но это довольно длительная и дорогостоящая процедура. Можно снизить подвижность токсичных соединений и поступление их в растения, если повысить рН почв известкованием или добавлять большие дозы органических веществ, например торфа. Неплохой эффект может дать глубокая вспашка, когда верхний загрязнённый слой почвы при вспашке опускают на глубину 50-70 см, а глубокие слои почвы поднимают на поверхность. Для этого можно воспользоваться специальными многоярусными плугами, но при этом глубокие слои всё равно остаются загрязнёнными. Наконец, на загрязнённых тяжёлыми металлами (но не радионуклидами) почвах можно выращивать культуры, не используемые в качестве продовольствия или кормов, например цветы. С 1993 г. на территории РБ осуществляется агроэкологический мониторинг за основными токсикантами окружающей среды - тяжелыми металлами, пестицидами и радионуклидами. На территории района, в котором находится хозяйство, превышение ПДК тяжелыми металлами выявлено не было.