Числа натуральные целые рациональные иррациональные алгебраические трансцендентные. Трансцендентные числа лиувилля. Приближенное вычисление значения числа e

Кроме деления действительных чисел на рациональные и иррациональные, имеется другое их деление - на алгебраические и трансцендентные.

Если действительное число удовлетворяет некоторому уравнению вида

с целыми коэффициентами, то мы говорим, что это число алгебраическое. Действительное число, не удовлетворяющее никакому уравнению такого вида, называется трансцендентным. (Комплексные числа делятся на алгебраические и трасцендентные точно таким же образом, однако в дальнейшем нас будут интересовать только действительные числа.)

Легко видеть, что каждое рациональнее число является алгебраическим. Например, 5/7 удовлетворяет уравнению требуемого типа . Вообще, любое рациональное число удовлетворяет уравнению и потому является алгебраическим.

Так как каждое рациональное число является алгебраическим, то каждое неалгебраическое число нерационально (см. способ 12 из указанной на стр. 40 таблицы «Способов выражения: если А, то В»), или, в более удобной для нас форме: каждое трансцендентное число иррационально. Это деление схематически проиллюстрировано на рис. 15.

На этом рисунке числа фигурируют в качестве примеров алгебраических чисел. Они действительно являются алгебраическими, поскольку удовлетворяют соответственно следующим алгебраическим уравнениям:

Числа , с другой стороны, указаны как примеры трансцендентных чисел. (Число , равное 3,14159..., представляет собой отношение длины окружности к длине ее диаметра.) Мы не можем привести здесь доказательства трансцендентности этих чисел, поскольку они основываются на применении методов значительно более глубоких чем те, которыми мы пользуемся. Трансцендентность числа была установлена в 1882 г., а трансцендентность чисел является значительно более поздним результатом - она была доказана лишь в 1934 г. Число было использовано в качестве примера великим математиком Давидом Гильбертом, когда он в 1900 г. огласил знаменитый список двадцати трех проблем, рассматриваемых им как важнейшие нерешенные математические проблемы. В частности, седьмая проблема Гильберта состояла в следующем: выяснить, является ли число алгебраическим или трансцендентным, если известно, что числа алгебраические. (Случаи и рационального были исключены, так как в этих случаях довольно легко доказать, что число - алгебраическое.) В 1934 г. А. О. Гельфонд и независимо от него Т. Шнейдер установили, что число трансцендентно. Трансцендентность числа является, конечно, частным случаем этого общего результата.

Трансцендентность числа также вытекает из этого результата. В самом деле, обозначим через , а 10 - через а. В силу определения десятичного логарифма

Если бы число было алгебраическим и иррациональным, то по теореме Гельфонда - Шнейдера число должно было бы быть трансцендентным. Поскольку это не так, то либо рационально, либо трансцендентно. Но выше мы показали, что число иррационально. Следовательно, оно трансцендентно.

Вообще, из теоремы Гельфонда - Шнейдера вытекает, что все числа , где рационально, являются либо трансцендентными, либо рациональными. В силу сказанного в § 3 (см. также упр. 4 на стр. 97) это означает, что число трансцендентно при всех положительных рациональных , исключая следующие:

Не следует забывать, что все рассматриваемые в настоящей книге логарифмы являются десятичными, т. е. берутся по основанию 10.

Таким образом, все числа , где - любое целое число между 1 и 1000, исключая трансцендентны. С другой стороны, значения тригонометрических функций, например число , иррациональность которых была доказана в начале этой главы, являются алгебраическими. Относящийся сюда общий результат формулируется так для любого рационального числа числа

Слово «трансцендентный» обычно ассоциируется с трансцендентальной медитацией и разнообразной эзотерикой. Но чтобы употреблять его правильно, нужно как минимум отличать его от термина «трансцендентальный», а как максимум - вспомнить его роль в работах Канта и других философов.

Это понятие произошло от латинского transcendens - «переступающий», «превосходящий», «выходящий за пределы». В целом он обозначает то, что принципиально недоступно для эмпирического познания или не основано на опыте. Предпосылки термина возникли еще в философии неоплатонизма - основатель направления Плотин создал учение о Едином - всеблагом первоначале, которое невозможно познать ни усилием мысли, ни с помощью чувственного опыта. «Единое не есть сущее, но родитель его» - объясняет философ.

Полнее всего термин «трансцендентный» был раскрыт в философии Иммануила Канта, где он использовался для характеристики , существующих независимо от сознания и действующих на наши органы чувств, оставаясь при этом принципиально непознаваемыми, как на практике, так и в теории. Противоположность трансцендентности - : она означает либо неотъемлемость, внутреннюю связь какого-либо качества объекта с самим объектом, либо познаваемость объекта на личном опыте. Например, если предположить, что Вселенная создана по какому-то высшему замыслу, сам замысел для нас трансцендентен - мы можем только строить гипотезы о нем. Но если этот замысел существует в действительности, его последствия для нас имманентны, проявляясь в физических законах и обстоятельствах, в которые мы попадаем. Поэтому в некоторых теологических концепциях Бог трансцендентен и находится вне созданного им бытия.

Некоторые вещи-в-себе все же доступны априорному познанию: например, пространство и время, идеи Бога, добра и красоты, логические категории. То есть трансцендентальные объекты - это, образно говоря, «предустановленные по умолчанию» в нашем разуме

Представление о трансцендентности существует и в математике: трансцендентное число - это число, которое не может быть вычисленным при помощи алгебры или выраженным алгебраически (то есть, не может быть корнем многочлена с целыми коэффициентами, не тождественного нулю). В их число входят, например, числа π и e.

Понятие, близкое к «трансцендентному», но иное по значению - «трансцендентальное». Изначально оно обозначало просто область отвлеченных умственных категорий, а впоследствии его развил Кант, попав в собственную ловушку: построить философскую систему только на эмпирических данных оказалось невозможно, а никаких других источников опыта, кроме эмпирики он не признавал. Чтобы выкрутиться, философу пришлось допустить, что некоторые вещи-в-себе все же доступны априорному познанию: например, пространство и время, идеи Бога, добра и красоты, логические категории. То есть трансцендентальные объекты - это, образно говоря, «предустановленные по умолчанию» в нашем разуме - при этом информация о них существует сама по себе и не следует из нашего опыта.

Существует и еще одно родственное понятие - трансценденция. В широком смысле слова оно означает переход границы между двумя разнородными областями, в особенности переход из сферы посюстороннего в сферу потустороннего, трансцендентного. Для простоты возьмем пример из фантастики: параллельный мир для обычного человека - трансцендентное явление. Но когда герой попадает в этот параллельный мир или каким-то образом оказывается способен его воспринимать, это трансценденция. Или более сложный пример из экзистенциальной философии: Жан-Поль Сартр считал, что человек трансцендентен, поскольку он выходит за рамки любого возможного собственного опыта: мы можем изучать себя и окружающий мир с разных сторон, но никогда даже не приблизимся к полному познанию себя. Но одновременно человек обладает способностью к трансценденции: он трансцендирует любую вещь, придавая ей какое-либо значение. Трансценденция - важный элемент и в религии: она помогает человеку освободиться от своей материальной природы и прикоснуться к чему-то запредельному.

Из философии понятие трансцендентальности перекочевало и в психологию: швейцарский психолог Карл Юнг ввел понятие «трансцендентальная функция» - это функция, объединяющая сознательное и бессознательное. В частности, трансцендентальную функцию может выполнять психоаналитик - он помогает пациенту проанализировать образы бессознательного (например, сновидения) и связать их воедино с сознательными процессами в его психике.

Как говорить

Неправильно «Я записалась на занятия по трансцендентной медитации». Правильно - «трансцендентальной».

Правильно «Когда я захожу в храм, я испытываю чувство слияния с чем-то трансцендентным».

Правильно «Искусство трансцендирует знакомые нам предметы из материального мира, наполняя их высшим смыслом».

На действительной прямой кроме алгебраических чисел поместилось еще одно множество, мощность которого совпадает с мощностью всей прямой - это множество трансцендентных чисел.

Определение 6 : Число, не являющееся алгебраическим, называется трансцендентным , то есть трансцендемнтное числом (лат. transcendere - переходить, превосходить) - это вещественное или комплексное число, которое не может быть корнем многочлена (не равного тождественно нулю) с рациональными коэффициентами

Свойства трансцендентных чисел:

· Множество трансцендентных чисел континуально.

· Каждое трансцендентное вещественное число является иррациональным, но обратное неверно. Например, число - иррациональное, но не трансцендентное: оно является корнем многочлена (и потому является алгебраическим).

· Порядок на множестве вещественных трансцендентных чисел изоморфен порядку на множестве иррациональных чисел.

· Мера иррациональности почти всякого трансцендентного числа равна 2.

Впервые существование трансцендентных чисел доказано Лиувиллем. Доказательство существования трансцендентных чисел у Лаувилля эффективно; на основе следующей теоремы, являющейся непосредственным следствием теоремы 5, строятся конкретные примеры трансцендентных чисел.

Теорема 6 [3, стр. 54] .: Пусть - действительное число. Если для любого натурального n 1 и любого действительного c >0 существует хотя бы одна рациональная дробь, такая, что (11), то - трансцендентное число.

Доказательство: Если бы было алгебраическим, то нашлось бы (теорема 5) целое положительное n и действительное c >0 такие, что для любой дроби было бы, а это противоречит тому, что имеет место (11). Предположение, что алгебраическое число, т.е. трансцендентное число. Теорема доказана.

Числа, для которых при любых n 1 и c >0 неравенство (11) имеет решение в целых числах a и b называются трансцендентными числами Лиувилля.

Теперь у нас есть средство для построения действительных чисел, не являющихся алгебраическими. Нужно построить число, допускающее приближения сколь угодно высокого порядка.

Пример :

a - трансцендентное число.

Возьмем произвольные действительные n 1 и c >0. Пусть, где k выбрано настолько большим, что и kn , тогда

Поскольку для произвольных n 1 и c >0 можно найти дробь такую, что, то - трансцендентное число.

Зададим число в виде бесконечной десятичной дроби: где

Тогда, для любого, где, . Таким образом, а это означает, что допускает приближения сколь угодно высокого порядка и поэтому не может быть алгебраическим.

В 1873 году Ш. Эрмит доказал трансцендентность числа e , основания натуральных логарифмов.

Для доказательства трансцендентности числа e потребуются две леммы.

Лемма 1. Если g (x ) - многочлен с целыми коэффициентами, то для любого k N все коэффициенты его k- ой производной g (k ) (x ) делятся на k !.

Доказательство. Так как оператор d/dx линейный, то утверждение леммы достаточно проверить только для многочленов вида g (x )=x s , s 0.

Если k >s , то g (k) (x )= 0 и k !|0.

Если k< s , то

биномиальный коэффициент является целым числом и g (k) (x ) опять-таки делится на k ! нацело.

Лемма 2 (Тождество Эрмита) . Пусть f (x ) - произвольный многочлен степени k с действительными коэффициентами,

F(x )=f (x )+ f " (x )+(x )+ … + f (k) (x ) - сумма всех его производных. Тогда для любого действительного (и даже комплексного, но нам это пока не понадобится) x выполнено:

Доказательство. Интегрируем по частям:

Интеграл вновь интегрируем по частям, и так далее. Повторив эту процедуру k +1 раз, получим:

Теорема 7 (Эрмит, 1873) . Число е трансцендентно.

Доказательство. Докажем это утверждение от противного. Допустим, что е - алгебраическое число, степени m . Тогда

a m e m + … +a 1 e +a 0 =0

для некоторого натурального m и некоторых целых a m ,… a 1 , a 0 . Подставим в тождество Эрмита (12) вместо х целое число k которое принимает значения от 0, до m ; умножим каждое равенство

соответственно на a k , а затем все их сложим. Получим:

Так как (это наше противное предположение), то выходит, что для любого многочлена f (x ) должно быть выполнено равенство:

За счет подходящего выбора многочлена f (x ) можно сделать левую часть (13) ненулевым целым числом, а правая часть при этом окажется между нулем и единицей.

Рассмотрим многочлен, где n определим позже (n N , и n большое).

Число 0 - корень кратности n -1 многочлена f (x ), числа 1, 2,…, m - корни кратности n , следовательно:

f (l ) (0)=0, l =1,2,…, n -2

f (n-1) (0)=(-1) mn (m !) n

f (l ) (k )=0, l =0,1, …, n -1; k =1,2,…, m

Рассмотрим g(x )=x n -1 (x -1) n (x -2) n … (x-m ) n - многочлен, похожий на f (x ), но с целыми коэффициентами. По лемме 1, коэффициенты g (l ) (x ) - целые числа, делящиеся на l !, следовательно, при l < n , у производной g (l ) (x ) все коэффициенты - целые числа, делящиеся на n , т.к. g (l ) (x ) получается из g (l) (x ) делением только на (n -1)!. Именно поэтому

где А - подходящее целое число, а над знаком суммы стоит число (m +1) n -1 - степень многочлена f (x ) и, хоть суммировать можно и до бесконечности, ненулевых производных у f (x ) именно столько.

Аналогично

где B k - подходящие целые числа, k = 1, 2,…, m .

Пусть теперь n N - любое целое число, удовлетворяющее условиям:

Снова рассмотрим равенство (13):

В сумме слева все слагаемые - целые числа, причем a k F (k ) при k = 1, 2,…, m делится на n , а a 0 F (0) на n не делится. Это означает, что вся сумма, будучи целым числом, на n не делится, т.е. не является нулем. Следовательно,

Оценим теперь правую часть равенства (13). Ясно, что на отрезке и поэтому на этом отрезке

где константы C 0 и C 1 не зависят от n . Известно, что

поэтому, при достаточно больших n , правая часть (13) меньше единицы и равенство (13) невозможно.

В 1882 году Линдеман доказал теорему о трансцендентности степени числа e с ненулевым алгебраическим показателем, тем самым доказав трансцендентность числа.

Теорема 8 (Линдеман) [3, стр. 58 ]. Если - алгебраическое число и, то число - трансцендентно.

Теорема Линдемана позволяет строить трансцендентные числа.

Примеры :

Из теоремы Линдемана вытекает, например, что число ln 2 - трансцендентно, ведь 2=e ln 2 , а число 2 - алгебраическое и если б число ln 2 было алгебраическим, то за леммой число 2 было б трансцендентным числом.

Вообще, для любого алгебраического, ln за теоремой Линдемана является трансцендентным. Если же трансцендентное, то ln не обязательно трансцендентное число, например ln e =1

Оказывается, мы еще в средней школе видели массу трансцендентных чисел - ln 2, ln 3, ln () и т.п.

Отметим также, что трансцендентними являються числа вида, для любого ненулевого алгебраического числа (по теореме Линдемана - Вейерштрасса которая является обобщением теоремы Линдемана). Например, трансцендентными являются числа, .

Если же трансцендентно, то, не обязательно трансцендентные числа, например,

Доказательство теоремы Линдемана можно провести с помощью тождества Эрмита, аналогично тому, как была доказана трансцендентность, с некоторыми усложнениями в преобразованиях. Именно так ее и доказывал сам Линдеман. А можна эту теорему доказывать иным путем, так как это делал советский математик А.О. Гельфонд, идеи которого привели в середине ХХ века к решению Седьмой проблемы Гильберта.

В 1900 году на II Международном конгрессе математиков Гильберт в числе сформулированных им проблем сформулировал седьмую проблему: «Если, верно ли, что числа вида, где, - алгебраические и - иррационально являются трансцендентными числами?» . Эта проблема была решена в 1934 году Гельфондом, который доказал, что все такие числа действительно являются трансцендентными.

Доказательство трансцендентности значений показательной функции, предложенное Гельфондом, основывается на применении интерполяционных методов .

Примеры:

1) На основании теоремы Гельфонда можна доказать, например, что число является трансцендентным, поскольку, если б оно было алгебраическим иррациональным, то, поскольку то число 19 за теоремой Гельфонда было б трансцендентным, что неправда.

2) Пусть a и b - иррациональные числа. Может ли число a b быть рациональным?

Конечно, с использованием седьмой проблемы Гильберта эту задачу решить нетрудно. В самом деле, число - трансцендентное (поскольку - алгебраическое иррациональное число). Но все рациональные числа являются алгебраическими, поэтому - иррациональное. С другой стороны,

Итак, мы просто предъявили такие числа: , Однако эта задача может быть решена и без каких-либо ссылок на результат Гельфонда. Можна рассуждать следующим образом: рассмотрим число. Если это число рациональное, то задача решена, такие a и b найдены. Если же оно иррациональное, то возьмем, и.

Итак, мы предъявили две пары чисел a и b , таких что одна из этих пар удовлетворяет поставленному условию, но ему неизвестно, какая именно. Но ведь предъявить такую пару и не требовалось! Таким образом, это решение в некотором смысле представляет собой теорему существования.

4.2. Алгебраические и трансцендентные числа

Действительные числа иногда подразделяют также на алгебраические и трансцендентные.

Алгебраическими называют числа, которые являются корнями алгебраических многочленов с целыми коэффициентами, например, 4, . Все остальные (неалгебраические) числа относятся к трансцендентным. Так как каждое рациональное число p/q является корнем соответствующего многочлена первой степени с целыми коэффициентами qx -p, то все трансцендентные числа иррациональны.

Выделим характерные особенности рассмотренных (натуральных, рациональных, действительных) чисел: они моделируют только одно свойство - количество; они одномерны и все изображаются точками на одной прямой, называемой координатной осью.

5. Комплексные числа

5.1. Мнимые числа

Еще более странными, чем иррациональные, оказались числа новой природы, открытые итальянским ученым Кардано в 1545 году. Он показал, что система уравнений, не имеющая решений во множестве действительных чисел, имеет решения вида, . Нужно только условиться действовать над такими выражениями по правилам обычной алгебры и считать, что· = -.

Кардано называл такие величины «чисто отрицательными» и даже «софистически отрицательными», считал их бесполезными и старался не употреблять.

Долгое время эти числа считали невозможными, несуществующими, воображаемыми. Декарт назвал их мнимыми, Лейбниц - «уродом из мира идей, сущностью, находящейся между бытием и небытием».

В самом деле, с помощью таких чисел нельзя выразить ни результат измерения какой-нибудь величины, ни изменение какой-нибудь величины.

Мнимым числам не было места на координатной оси. Однако ученые заметили, что если взять действительное число b на положительной части координатной оси и умножить его на, то получим мнимое число b, неизвестно где расположенное. Но если это число еще раз умножить на, то получим -b, то есть первоначальное число, но уже на отрицательной части координатной оси. Итак, двумя умножениями на мы перебросили число b с положительного в отрицательные, и ровно на середине этого броска число было мнимым. Так нашли место мнимым числам в точках на мнимой координатной оси, перпендикулярной к середине действительной координатной оси. Точки плоскости между мнимой и действительной осями изображают числа, найденные Кардано, которые в общем виде a + b·i содержат действительные числа а и мнимые b·i в одном комплексе (составе), поэтому называются комплексными числами.

Это был 4-ый уровень обобщения чисел.

Постепенно развивалась техника операций над мнимыми числами. На рубеже XVII и XVII веков была построена общая теория корней n-ных степеней сначала из отрицательных, а затем из любых комплексных чисел, основанная на следующей формуле английского математика А. Муавра:

С помощью этой формулы можно было также вывести формулы для косинусов и синусов кратных дуг.

Леонард Эйлер вывел в 1748 году замечательную формулу:

которая связывала воедино показательную функцию с тригонометрической. С помощью формулы Эйлера можно было возводить число е в любую комплексную степень. Любопытно, например, что. Можно находить sin и cos комплексных чисел, вычислять логарифмы таких чисел и т.д.

Долгое время даже математики считали комплексные числа загадочными и пользовались ими только для математических манипуляций. Так, швейцарский математик Бернулли применял комплексные числа для решения интегралов. Чуть позже с помощью мнимых чисел научились выражать решения линейных дифференциальных уравнений с постоянными коэффициентами. Такие уравнения встречаются, к примеру, в теории колебаний материальной точки в сопротивляющейся среде.

Алгебраические группы матриц

Алгебраические системы замыканий

Начнем с понятия алгебраической операции. Пусть A - универсальная алгебра с множеством алгебраических операций Щ. Каждая операция щ из Щ имеет определённую арность n, nN{0}. Для любого натурального n n-арная операция щ - это отображение из An в A...

Властивості простих чисел

Взаємно прості числа -- натуральні або цілі числа, які не мають спільних дільників більших за 1, або, інакше кажучи, якщо їх найбільший спільний дільник дорівнює 1. Таким чином, 2 і 3 -- взаємно прості, а 2 і 4 -- ні (діляться на 2)...

Графики и их функции

Рассмотрим основные алгебраические действия над функциями и их графиками, такие как сложение и вычитание (y = f(x) ±g(x)), умножение (y = f(x) ·g(x)), деление (y = f(x) / g(x)). При построении такого типа графиков следует учитывать...

Комплексные числа: их прошлое и настоящее

Математика в средние века

Необходимым условием применения метода фан-чэн к системам уравнений было введение отрицательных чисел. Например, при решении системы, получаем таблицу. Следующий шаг: вычитание элементов третьего столбца справа из элементов первого...

Нумерология

Числа у Пифагора считались не просто абстрактными заменителями реальных вещей, но живыми сущностями, отражающими свойства пространства, энергии или звуковой вибрации. Главная наука о числе, арифметика...

Нумерология

Легенда гласит, что гармонические числа, соотношение которых рождает музыку сфер, были найдены Пифагором. Фламмарион так пересказывает это предание:"Рассказывают, что проходя мимо одной кузницы, он услыхал стук молотов...

Практическое применение квадратурных формул с весом Чебышева-Эрмита

Пусть на всей оси задана четная весовая функция. (1.1) Дифференцируя эту функцию последовательно, находим (1.2) По индукции легко доказать, что производная порядка n от функции (1.1) есть произведение этой функции на некоторый многочлен степени n...

Введем новое недействительное число, квадрат которого равен -1. Это число обозначим символом Я и назовем мнимой единицей. Итак, (2.1) Тогда. (2.2) 1. Алгебраическая форма комплексного числа Если, то число (2.3) называется комплексным числом...

Рекуррентно заданные числовые последовательности

При решении многих задач часто приходится сталкиваться с последовательностями, заданными рекуррентно, но, в отличии от последовательности Фибоначчи, не всегда возможно получить её аналитическое задание...

Трансцендентные уравнения с параметрами и методы их решений

Трансцендентное уравнение - уравнение, содержащее трансцендентные функции (иррациональные, логарифмические, показательные, тригонометрические и обратные тригонометрические) от неизвестного (переменного), например уравнения...

Удивительные числа

Давным-давно, помогая себе при счете камушками, люди обращали внимание на правильные фигуры, которые можно выложить из камушков. Можно просто класть камушки в ряд: один, два, три. Если класть их в два ряда, чтобы получались прямоугольники...

Удивительные числа

Иногда частным случаем дружественных чисел считаются совершенные числа: каждое совершенное число дружественно себе. Никомах Герасский, знаменитый философ и математик, писал: " Совершенные числа красивы. Но известно...

Фрактальные свойства социальных процессов

Геометрические фракталы являются статическими фигурами. Подобный подход вполне приемлем до тех пор, пока не возникает необходимость рассмотрения таких природных явлений, как падающие потоки воды, турбулентные завихрения дыма...

    Илья Щуров

    Математик Илья Щуров о десятичных дробях, трансцендентности и иррациональности числа Пи.

    Как «единица» помогла построить первые города и великие империи? Как вдохновляла выдающиеся умы человечества? Какую роль в появлении денег она сыграла? Как «единица» объединилась с нулем, чтобы править современным миром? История единицы неразрывно связана с историей европейской цивилизации. Терри Джонс отправляется в юмористическое путешествие с целью собрать воедино удивительную историю нашего самого простого числа. С помощью компьютерной графики в этой программе единица оживает в самых различных испостасях. Из истории единицы становится ясно, откуда появились современные числа, и каким образом изобретение нуля спасло нас от необходимости сегодня использовать римские цифры.

    Жак Сезиано

    Мы знаем о Диофанте немного. Кажется, он жил в Александрии. Никто из греческих математиков не упоминает его до IV века, так что он вероятно жил в середине III века. Самая главная работа Диофанта, «Арифметика» (Ἀριθμητικά), состоялась в начале из 13 «книгах» (βιβλία), т. е. главах. Мы сегодня имеем 10 из них, а именно: 6 в греческом тексте и 4 других в средневековом арабском переводе, место которых в середине греческих книг: книги I-III по-гречески, IV-VII по-арабски, VIII-X по-гречески. «Арифметика» Диофанта прежде всего собрание задач, всего около 260. Теории, по правде говоря, нет; имеются только общие инструкции в введении книги, и частные замечания в некоторых задачах, когда нужно. «Арифметика» уже имеет черты алгебраического трактата. Сперва Диофант пользуется разными знаками, чтобы выражать неизвестное и его степени, также и некоторые вычисления; как и все алгебраические символики средних веков, его символика происходит от математических слов. Потом, Диофант объясняет, как решить задачу алгебраическим способом. Но задачи Диофанта не алгебраические в обычном смысле, потому что почти все сводятся к решению неопределённого уравнения или систем таких уравнений.

    Георгий Шабат

    Программа курса: История. Первые оценки. Проблема соизмеримости длины окружности с ее диаметром. Бесконечные ряды, произведения и другие выражения для π. Сходимость и ее качество. Выражения, содержащие π. Последовательности, быстро сходящиеся к π. Современные методы вычисления π, использование компьютеров. Об иррациональности и трансцендентности π и некоторых других чисел. Предварительных знаний для понимания курса не требуется.

    Ученые из Оксфордского университета заявили, что самым ранним известным употреблением цифры 0 для обозначения отсутствия значения разряда (как в числе 101) следует считать текст индийского манускрипта Бахшали.

    Василий Писпанен

    Кто не играл в детстве в игру "назови самое большое число"? Миллионы, триллионы и прочие "-оны" представить в уме уже сложно, но мы с вами попробуем разобрать "мастодонта" в математике - число Грэма.

    Виктор Клепцын

    Действительное число можно сколь угодно точно приблизить рациональными. А насколько хорошим может быть такое приближение – в сравнении с его сложностью? Например, оборвав десятичную запись числа x на k-й цифре после запятой, мы получим приближение x≈a/10^k с ошибкой порядка 1/10^k. И вообще, зафиксировав знаменатель q у приближающей дроби, мы точно можем получить приближение с ошибкой порядка 1/q. А можно ли сделать лучше? Знакомое всем приближение π≈22/7 даёт ошибку порядка 1/1000 – то есть явно сильно лучше, чем можно было бы ожидать. А почему? Повезло ли нам, что у π такое приближение есть? Оказывается, что для любого иррационального числа есть бесконечно много дробей p/q, приближающих его лучше, чем 1/q^2. Это утверждает теорема Дирихле – и мы начнём курс с её немного нестандартного доказательства.

    В 1980 году Книга рекордов Гиннесса повторила утверждения Гарднера, ещё больше подогрев интерес публики к этому числу. Число Грехема в невообразимое количество раз больше, чем другие хорошо известные большие числа, такие, как гугол, гуголплекс и даже больше, чем число Скьюза и число Мозера. На самом деле вся наблюдаемая вселенная слишком мала для того, чтобы вместить в себя обыкновенную десятичную запись числа Грехема.

    Дмитрий Аносов

    Лекции читает Аносов Дмитрий Викторович, доктор физико-математических наук, профессор, академик РАН. Летняя школа «Современная математика», г. Дубна. 16-18 июля 2002 г.

    Корректно ответить на этот вопрос нельзя, поскольку числовой ряд не имеет верхнего предела. Так, к любому числу достаточно всего лишь прибавить единицу, чтобы получить число ещё большее. Хотя сами числа бесконечны, собственных названий у них не так уж и много, так как большинство из них довольствуются именами, составленными из чисел меньших. Понятно, что в конечном наборе чисел, которых человечество наградило собственным именем, должно быть какое-то наибольшее число. Но как оно называется и чему оно равно? Давайте же, попробуем в этом разобраться и заодно узнать, насколько большие числа придумали математики.