Валентность. Определение валентности. Элементы с постоянной валентностью. Валентность и валентные электроны

ЖЕЛЕЗО (лат. Ferrum), Fe, химический элемент VIII группы периодической системы, атомный номер 26, атомная масса 55,847. Происхождение как латинского, так и русского названий элемента однозначно не установлено. Природное железо представляет собой смесь четырех нуклидов с массовыми числами 54 (содержание в природной смеси 5,82% по массе), 56 (91,66%), 57 (2,19%) и 58 (0,33%). Конфигурация двух внешних электронных слоев 3s 2 p 6 d 6 4s 2 . Обычно образует соединения в степенях окисления +3 (валентность III) и +2 (валентность II). Известны также соединения с атомами железа в степенях окисления +4, +6 и некоторых других.

В периодической системе Менделеева железо входит в группу VIIIВ. В четвертом периоде, к которому принадлежит и железо, в эту группу входят, кроме железа, также кобальт (Co) и никель (Ni) . Эти три элемента образуют триаду и обладают сходными свойствами.

Радиус нейтрального атома железа 0,126 нм, радиус иона Fe 2+ — 0,080 нм, иона Fe 3+ — 0,067 нм. Энергии последовательной ионизации атома железа 7,893, 16,18, 30,65, 57, 79 эВ. Сродство к электрону 0,58 эв. По шкале Полинга электроотрицательность железа около 1,8.

Железо высокой чистоты — это блестящий серебристо-серый, пластичный металл, хорошо поддающийся различным способам механичской обработки.

Физические и химические свойства: при температурах от комнатной и до 917°C, а также в интервале температур 1394-1535°C существует -Fe с кубической объемно центрированной решеткой, при комнатной температуре параметр решетки а = 0,286645 нм. При температурах 917-1394°C устойчиво -Fe с кубической гранецентрированной решеткой Т (а = 0,36468 нм). При температурах от комнатной до 769°C (так называемая точка Кюри) железо обладает сильными магнитными свойствами (оно, как говорят, ферромагнитно), при более высоких температурах железо ведет себя как парамагнетик. Иногда парамагнитное -Fe с кубической объемно центрированной решеткой, устойчивое при температурах от 769 до 917°C, рассматривают как модификацию железа, а -Fe, устойчивое при высоких температурах (1394-1535°C), называют по традиции -Fe (представления о существовании четырех модификаций железа возникли тогда, когда еще не существовал рентгеноструктурный анализ и не было объективной информации о внутреннем строении железа). Температура плавления 1535°C, температура кипения 2750°C, плотность 7,87 г/см 3 . Стандартный потенциал пары Fe 2+ /Fe 0 –0,447В, пары Fe 3+ /Fe 2+ +0,771В.

При хранении на воздухе при температуре до 200°C железо постепенно покрывается плотной пленкой оксида, препятствующего дальнейшему окислению металла. Во влажном воздухе железо покрывается рыхлым слоем ржавчины, который не препятствует доступу кислорода и влаги к металлу и его разрушению. Ржавчина не имеет постоянного химического состава, приближенно ее химическую формулу можно записать как Fe 2 О 3 ·xН 2 О.

С кислородом (O) железо реагирует при нагревании. При сгорании железа на воздухе образуется оксид Fe 2 О 3 , при сгорании в чистом кислороде — оксид Fe 3 О 4 . Если кислород или воздух пропускать через расплавленное железо, то образуется оксид FeО. При нагревании порошка серы (S) и железа образуется сульфид, приближенную формулу которого можно записать как FeS.

Железо при нагревании реагирует с галогенами . Так как FeF 3 нелетуч, железо устойчиво к действию фтора (F) до температуры 200-300°C. При хлорировании железа (при температуре около 200°C) образуется летучий FeСl 3 . Если взаимодействие железа и брома (Br) протекает при комнатной температуре или при нагревании и повышенном давлении паров брома, то образуется FeBr 3 . При нагревании FeСl 3 и, особенно, FeBr 3 отщепляют галоген и превращаются в галогениды железа (II). При взаимодействии железа и иода (I) образуется иодид Fe 3 I 8 .

При нагревании железо реагирует с азотом (N) , образуя нитрид железа Fe 3 N, с фосфором (P) , образуя фосфиды FeP, Fe 2 P и Fe 3 P, с углеродом (C) , образуя карбид Fe 3 C, с кремнием (Si) , образуя несколько силицидов, например, FeSi.

При повышенном давлении металлическое железо реагирует с монооксидом углерода СО, причем образуется жидкий, при обычных условиях легко летучий пентакарбонил железа Fe(CO) 5 . Известны также карбонилы железа составов Fe 2 (CO) 9 и Fe 3 (CO) 12 . Карбонилы железа служат исходными веществами при синтезе железоорганических соединений, в том числе и ферроцена состава .

Чистое металлическое железо устойчиво в воде и в разбавленных растворах щелочей. В концентрированной серной и азотной кислотах железо не растворяется, так как прочная оксидная пленка пассивирует его поверхность.

С соляной и разбавленной (приблизительно 20%-й) серной кислотами железо реагирует с образованием солей железа (II):

Fe + 2HCl = FeCl 2 + H 2

Fe + H 2 SO 4 = FeSO 4 + H 2

При взаимодействии железа с приблизительно 70%-й серной кислотой реакция протекает с образованием сульфата железа (III):

2Fe + 4H 2 SO 4 = Fe 2 (SO 4) 3 + SO 2 + 4H 2 O

Оксид железа (II) FeО обладает основными свойствами, ему отвечает основание Fe(ОН) 2 . Оксид железа (III) Fe 2 O 3 слабо амфотерен, ему отвечает еще более слабое, чем Fe(ОН) 2 , основание Fe(ОН) 3 , которое реагирует с кислотами:

2Fe(ОН) 3 + 3H 2 SO 4 = Fe 2 (SO 4) 3 + 6H 2 O

Гидроксид железа (III) Fe(ОН) 3 проявляет слабо амфотерные свойства; он способен реагировать только с концентрированными растворами щелочей:

Fe(ОН) 3 + КОН = К

Образующиеся при этом гидроксокомплексы железа(III) устойчивы в сильно щелочных растворах. При разбавлении растворов водой они разрушаются, причем в осадок выпадает гидроксид железа (III) Fe(OH) 3 .

Соединения железа (III) в растворах восстанавливаются металлическим железом:

Fe + 2FeCl 3 = 3FeCl 2

При хранении водных растворов солей железа (II) наблюдается окисление железа (II) до железа (III):

4FeCl 2 + O 2 + 2H 2 O = 4Fe(OH)Cl 2

Из солей железа (II) в водных растворах устойчива соль Мора — двойной сульфат аммония и железа (II) (NH 4) 2 Fe(SO 4) 2 ·6Н 2 О.

Железо (III) способно образовывать двойные сульфаты с однозарядными катионами типа квасцов, например, KFe(SO 4) 2 — железокалиевые квасцы, (NH 4)Fe(SO 4) 2 — железоаммонийные квасцы и т.д.

При действии газообразного хлора (Cl) или озона на щелочные растворы соединений железа (III) образуются соединения железа (VI) — ферраты, например, феррат (VI) калия (K) : K 2 FeO 4 . Имеются сообщения о получении под действием сильных окислителей соединений железа (VIII).

Для обнаружения в растворе соединений железа (III) используют качественную реакцию ионов Fe 3+ с тиоцианат-ионами CNS – . При взаимодействии ионов Fe 3+ с анионами CNS – образуется ярко-красный роданид железа Fe(CNS) 3 . Другим реактивом на ионы Fe 3+ служит гексацианоферрат (II) калия (K) : K 4 (ранее это вещество называли желтой кровяной солью). При взаимодействии ионов Fe 3+ и 4– выпадает ярко-синий осадок.

Реактивом на ионы Fe 2+ в растворе может служить раствор гексацианоферрат (III) калия (K) K 3 , ранее называвшегося красной кровяной солью. При взаимодействии ионов Fe 3+ и 3– выпадает ярко-синий осадок такого же состава, как и в случае взаимодействия ионов Fe 3+ и 4– .

Сплавы железа с углеродом: железо используется главным образом в сплавах, прежде всего в сплавах с углеродом (C) — различных чугунах и сталях. В чугуне содержание углерода выше 2,14 % по массе (обычно — на уровне 3,5-4%), в сталях содержание углерода более низкое (обычно на уровне 0.8-1 %).

Чугун получают в домнах. Домна представляет собой гигантский (высотой до 30-40 м) усеченный конус, полый внутри. Стенки домны изнутри выложены огнеупорным кирпичом, толщина кладки составляет несколько метров. Сверху в домну вагонетками загружают обогащенную (освобожденную от пустой породы) железную руду, восстановитель кокс (каменный уголь специальных сортов, подвергнутый коксованию — нагреванию при температуре около 1000°C без доступа воздуха), а также плавильные материалы (известняк и другие), способствующие отделению от выплавляемого металла примесей — шлака. Снизу в домну подают дутье (чистый кислород (O) или воздух, обогащенный кислородом (O)). По мере того, как загруженные в домну материалы опускаются, их температура поднимается до 1200-1300°C. В результате реакций восстановления, протекающих главным образом с участием кокса С и СО:

Fe 2 O 3 + 3C = 2Fe + 3CO;

Fe 2 O 3 + 3CО = 2Fe + 3CO 2

возникает металлическое железо, которое насыщается углеродом (C) и стекает вниз.

Этот расплав периодически выпускают из домны через специальное отверстие — клетку — и дают расплаву застыть в специальных формах. Чугун бывает белый, так называемый передельный (его используют для получения стали) и серый, или литьевой. Белый чугун — это твердый раствор углерода (C) в железе. В микроструктуре серого чугуна можно различить микрокристаллики графита. Из-за наличия графита серый чугун оставляет след на белой бумаге.

Чугун хрупок, при ударе он колется, поэтому из него нельзя изготавливать пружины, рессоры, любые изделия, которые должны работать на изгиб.

Твердый чугун легче расплавленного, так что при его затвердевании происходит не сжатие (как обычно при затвердевании металлов и сплавов), а расширение. Эта особенность позволяет изготавливать из чугуна различные отливки, в том числе использовать его как материал для художественного литья.

Если содержание углерода (C) в чугуне снизить до 1,0-1,5%, то образуется сталь. Стали бывают углеродистыми (в таких сталях нет других компонентов, кроме Fe и C) и легированными (такие стали содержат добавки хрома (Cr) , никеля (Ni) , молибдена (Mo) , кобальта (Co) и других металлов, улучшающие механические и иные свойства стали).

Стали получают, перерабатывая чугун и металлический лом в кислородном конвертере, в электродуговой или мартеновской печах. При такой переработке снижается содержание углерода (C) в сплаве до требуемого уровня, как говорят, избыточный углерод (C) выгорает.

Физические свойства стали существенно отличаются от свойств чугуна: сталь упруга, ее можно ковать, прокатывать. Так как сталь, в отличие от чугуна, при затвердевании сжимается, то полученные стальные отливки подвергают обжатию на прокатных станах. После прокатки в объеме металла исчезают пустоты и раковины, появившиеся при затвердевании расплавов.

Производство сталей имеет в России давние глубокие традиции, и полученные нашими металлургами стали отличаются высоким качеством.

История получения железа: железо играло и играет исключительную роль в материальной истории человечества. Первое металлическое железо, попавшее в руки человека, имело, вероятно, метеоритное происхождение. Руды железа широко распространены и часто встречаются даже на поверхности Земли, но самородное железо на поверхности крайне редко. Вероятно, еще несколько тысяч лет назад человек заметил, что после горения костра в некоторых случаях наблюдается образование железа из тех кусков руды, которые случайно оказались в костре. При горении костра восстановление железа из руды происходит за счет реакции руды как непосредственно с углем, так и с образующимся при горении оксидом углерода (II) СО. Возможность получения железа из руд существенно облегчило обнаружение того факта, что при нагревании руды с углем возникает металл, который далее можно дополнительно очистить при ковке. Получение железа из руды с помощью сыродутного процесса было изобретено в Западной Азии во 2-м тысячелетии до нашей эры. Период с 9 – 7 века до нашей эры, когда у многих племен Европы и Азии развилась металлургия железа, получил название железного века, пришедшего на смену бронзовому веку. Усовершенствование способов дутия (естественную тягу сменили меха) и увеличение высоты горна (появились низкошахтные печи - домницы) привело к получению чугуна, который стали широко выплавлять в Западной Европе с 14 века. Полученный чугун переделывали в сталь. С середины 18 века в доменном процессе вместо древесного угля начали использовать каменно-угольный кокс. В дальнейшем способы получения железа из руд были значительно усовершенствованы, и в настоящее время для этого используют специальные устройства — домны, кислородные конвертеры, электродуговые печи.

Нахождение в природе: в земной коре железо распространено достаточно широко — на его долю приходится около 4,1% массы земной коры (4-е место среди всех элементов, 2-е среди металлов). Известно большое число руд и минералов, содержащих железо. Наибольшее практическое значение имеют красные железняки (руда гематит, Fe 2 O 3 ; содержит до 70% Fe), магнитные железняки (руда магнетит, Fe 3 О 4 ; содержит 72,4% Fe), бурые железняки (руда гидрогетит НFeO 2 ·n H 2 O), а также шпатовые железняки (руда сидерит, карбонат железа, FeСО 3 ; содержит около 48% Fe). В природе встречаются также большие месторождения пирита FeS 2 (другие названия — серный колчедан, железный колчедан, дисульфид железа и другие), но руды с высоким содержанием серы пока практического значения не имеют. По запасам железных руд Россия занимает первое место в мире. В морской воде 1·10 –5 — 1·10 –8 % железа.

Применение железа, его сплавов и соединений: чистое железо имеет довольно ограниченное применение. Его используют при изготовлении сердечников электромагнитов, как катализатор химических процессов, для некоторых других целей. Но сплавы железа — чугун и сталь — составляют основу современной техники. Находят широкое применение и многие соединения железа. Так, сульфат железа (III) используют при водоподготовке, оксиды и цианид железа служат пигментами при изготовлении красителей и так далее.

Биологическая роль: железо присутствует в организмах всех растений и животных как микроэлемент , то есть в очень малых количествах (в среднем около 0,02%). Однако железобактерии, использующие энергию окисления железа (II) в железо (III) для хемосинтеза, могут накапливать в своих клетках до 17-20% железа. Основная биологическая функция железа — участие в транспорте кислорода (O) и окислительных процессах. Эту функцию железа выполняет в составе сложных белков — гемопротеидов, простетической группой которых является железопорфириновый комплекс — гем. Среди важнейших гемопротеидов дыхательные пигменты гемоглобин и миоглобин, универсальные переносчики электронов в реакциях клеточного дыхания, окисления и фотосинеза цитохромы, ферменты каталоза и пероксида, и других. У некоторых беспозвоночных железосодержащие дыхательные пигменты гелоэритрин и хлорокруорин имеют отличное от гемоглобинов строение. При биосинтезе гемопротеидов железо переходит к ним от белка ферритина, осуществляющего запасание и транспорт железа. Этот белок, одна молекула которого включает около 4 500 атомов железа, концентрируется в печени, селезенке, костном мозге и слизистой кишечника млекопитающих и человека. Суточная потребность человека в железе (6-20 мг) с избытком покрывается пищей (железом богаты мясо, печень, яйца, хлеб, шпинат, свекла и другие). В организме среднего человека (масса тела 70 кг) содержится 4,2 г железа, в 1 л крови — около 450 мг. При недостатке железа в организме развивается железистая анемия, которую лечат с помощью препаратов, содержащих железо. Препараты железа применяются и как общеукрепляющие средства. Избыточная доза железа (200 мг и выше) может оказывать токсичное действие. Железо также необходимо для нормального развития растений, поэтому существуют микроудобрения на основе препаратов железа.

Железо (Ferrum, Fe) - химический элемент VIII группы периодической системы Д.И. Менделеева, входит в состав дыхательных пигментов, в т.ч. гемоглобина, участвует в связывании и переносе кислорода к тканям в организме животных и человека.

Атомный номер железа 26, атомная масса 55,847. В природе обнаружены 4 стабильных изотопа железа; известны 6 радиоактивных изотопов железа с массовыми числами от 52 до 61, из которых в медицине для исследования эритропоэза, обмена и всасывания железа применяют 59 Fe.

Чистое железо представляет собой блестящий белый ковкий металл, t пл 1539±5°, t кип около 3200°, относительная плотность 7,874; проявляет свойства ферромагнетиков (веществ, у которых ниже определенной температуры появляется самопроизвольная намагниченность). Железо обладает переменной валентностью; соединения железа , имеющего валентность +2 и +3, наиболее устойчивы, кроме того, железо может проявлять валентность +1, +4 и +6. В природе оно распространено преимущественно в виде соединений трехвалентного железа. В растениях, животных и микроорганизмах железо присутствует в составе сложных органических соединений и в небольших количествах в виде ионов Fe 2+ и Fe 3+ .

В организме взрослого человека содержится 4-5 г железа, изкоторых около 70% входит в состав гемоглобина (см. Кровь ), около 5-10% - в состав миоглобина, около 20-25% приходится на так называемое резервное железо и не более 0,1% железа находится в плазме крови; в клетках и тканях Ж. присутствует в составе дыхательных ферментов (его относительное содержание - около 1% железа организма). В плазме крови определяется так называемое геминовое железо , железо ферритина, внутрисосудистого гемоглобина и трансферрина. Геминовое железо входит в состав гемина (производного гема, в отличие от гемоглобина, содержащего только одну порфириновую группу). Ферритин представляет собой самый богатый железом сывороточный белок (в его составе имеется мицелла, содержащая до 4300 атомов окисленного железа), состоящий из белка апоферритина и гидрооксидфосфата железа.

Основная часть железа плазмы крови связана с белком трансферрином (сидерофиллином) - главным компонентом фракции b 1 -глобулинов. Трансферрин находится в крови в концентрации около 0,4 г /100 мл и при нормальном содержании Ж. в плазме крови (около 100 мкг /100 мл ) насыщен железом в среднем на 30%. Так называемая ненасыщенная железосвязывающая способность крови (НЖСС) определяется дополнительным количеством железа, которое может быть связано трансферрином, а общая железосвязывающая способность крови (ОЖСС) - общим количеством железа, которое способен связать трансферрин. В норме ОЖСС крови у мужчин составляет 45-75 мкмоль/л (250-400 мкг /100 мл ), у женщин на 10-15% ниже. Прочность комплекса трансферрин - железо максимальна при рН 7,0. При снижении величины рН, а также при восстановлении Ж. комплекс распадается на белок и так называемое кислотно-отщепляемое (негеминовое) железо . Концентрация негеминового железа в плазме крови зависит от возраста, пола и времени суток и составляет у взрослых мужчин 12-32 мкмоль/л (65-175 мкг /100 мл ), у взрослых женщин она на 10-15% ниже. Выведение железа с мочой в среднем в сутки равно 60-100 мкг .

Гиперсидеремия (повышение концентрации негеминового Ж. в плазме крови) с одновременным снижением НЖСС наблюдается при гемосидерозе , гемохроматозе , некоторых анемиях , острых и хронических инфекциях, циррозе печени , уремии (см. Почечная недостаточность ), злокачественных новообразованиях, гемолитической и паренхиматозной желтухах . Гипосидеремия (снижение концентрации негеминового железа в плазме крови), сопровождающаяся одновременным повышением НЖСС, наблюдается при истощений резервов Ж. , недостаточном его поступлении с пищей и при состояниях, сопровождающихся повышенной потребностью в железе (беременности, кровопотере, гипохромных анемиях, острых инфекционных болезнях и др.). Ж. может откладываться в тканях организма (сидероз). У шахтеров, занятых на разработках красного железняка, наблюдается экзогенный сидероз, при этом в легких откладывается железо в виде оксида Fe(III). В результате избыточного разрушения гемоглобина образуется пигмент гемосидерин - агрегат гидрооксида Fe(lll) с белками, гликозами-ногликанами и липидами, накопление гранул которого (эндогенный сидероз) происходит, например, в местах кровоизлияний. Поскольку обмен железа в организме в значительной степени определяется состоянием печени, определение содержания Ж. в плазме крови может быть использовано в качестве дополнительного функционального теста, свидетельствующего о состоянии печени.

Установлено, что ионы свободного Fe(ll), а также комплексные соединения железа могут инициировать свободнорадикальное перекисное окисление липидов (универсальный механизм повреждения биологических мембран, белков и нуклеиновых кислот) в организме. В связи с этим определение свободного ионизированного Ж. в биологических жидкостях приобретает особую важность. Так, содержание ионизированного железа повышается в синовиальной жидкости при артритах и в цереброспинальной жидкости при некоторых неврологических заболеваниях.

Ж. поступает в организм человека с пищей. К продуктам питания, богатым железом , относятся печень, чернослив, фасоль, горох, гречневая крупа, а также овсяная крупа, ржаной хлеб, мясо, яйца, шоколад, шпинат, яблоки, абрикосы. Содержание усвояемого Ж. в продуктах животного происхождения составляет 10-20% всего, содержащегося в них железа, в растительных продуктах 1-6%. У взрослого человека потребность в железе определяется необходимостью компенсации его потерь, а также степенью усвоения Ж. из пищи. Потребность в железе у женщин на 30-90% выше, чем у мужчин; у 15-16-летних юношей потребность в Ж. значительно выше, чем у взрослых мужчин и детей. У женщин репродуктивного возраста половина и более необходимого железо расходуется на компенсацию потерь гемоглобина при менструациях. При беременности потребность в Ж. возрастает примерно на 60%. Всасывание железа увеличено при железодефицитных состояниях. Плохо всасывается в кишечнике Ж. органических соединений; всасывание Ж. снижается и за счет образования его нерастворимых солей (так, при избытке в рационе неорганического фосфора, образующего с железосодержащими веществами нерастворимые соединения, может развиться железодефицитная анемия). Наиболее усвояемой формой железа является ионизированное Fe(ll), поэтому всасыванию Ж. способствует наличие соляной кислоты, вызывающей его ионизацию, и восстановителей, например аскорбиновой кислоты, способствующих восстановлению Fe(lll) до Fe(ll), а также веществ, которые могут связывать железо , образуя с ним усвояемые комплексы (в желудке - специфического гликопротеина, в кишечнике - алоферритина и аминокислот, содержащих сульфгидрильные группы). Несмотря на наличие в организме этих механизмов повышения усвояемости железа пищи, практическая потребность в Ж. в 5-10 раз превышает действительную физиологическую потребность в нем.

Основная часть всосавшегося в кишечнике железа поступает в кровоток, а затем в костный мозг, где используется главным образом для синтеза гемоглобина. Поступающее в эпителиальные клетки слизистой оболочки кишечника Fe(ll) быстро окисляется до гидрооксида Fe(lll), который соединяется с апоферритином, поэтому всасывание Ж. слизистой оболочкой кишечника лимитируется связывающей способностью апоферритина. Депонирование железа происходит в печени, где оно практически полностью находится в составе ферритина. Пути выведения избытка железа отсутствуют: при превышении емкости ферритинового депо избыток железа аккумулируется в печени и других органах в виде гранул гемосидерина, содержащих до 37% железа (по массе).

Содержание железа в сыворотке крови и в моче определяют по цветной реакции с сульфонированным батофенантролином. Железосвязывающую способность сыворотки крови определяют путем выдерживания испытуемой сыворотки с раствором Fe(lll); при этом весь трансферрин насыщается железом. Избыток солей железа удаляют путем их адсорбции на карбонате магния, который затем удаляют центрифугированием, и железо в надосадочной жидкости определяют с сульфонированным батофенантролином.

Участие железа в образовании гемоглобина обусловливает применение его препаратов в качестве антианемических средств .

Библиогр.: Лабораторные методы исследования в клинике, под ред. В.В. Меньшикова, с. 267, М., 1987; Петров В.Н. Физиология и патология обмена железа, Л., 1982, библиогр.; Щерба М.М. и др. Железодефицитные состояния, Л., 1975.

В разделе на вопрос какая валентность у Fe (железо) может ли она меняться? заданный автором ххх хххх лучший ответ это Лучше (удобнее) обсуждать вопрос, используя понятие "степень окисления", хотя это и не одно и тоже, что "валентность". Железо реально имеет ЧЕТЫРЕ устойчивые степени окисления: 0, +2, +3 и +6. Устойчивые в том смысле, что каждой из них соответствуют свои химические СОЕДИНЕНИЯ, например: Fe(CO)5 (0, карбонил железа) ; FeSO4 (+2, сульфат железа II); FeCl3 (+3, хлорид железа III); K2FeO4 (+6, оксоферрат калия) . Я надеюсь, когда нибудь синтезируют и соединения железа с максимально возможной степенью окисления +8 - пока это никому не удалось.

Ответ от Kira [новичек]
Понятие валентности нам давали еще в школе. А в вузе, когда писали уравнения окислительно-восстановительных реакций, уже пользовались почти исключительно степенью окисления. Для железа +2 и +3 - самые распространенные. Потом ввели еще одно понятие - координационное число. Тогда понятие валентности стало как бы "размываться". Под ней подразумевают то одно, то другое. Так в Fe(CO)5 степень окисления железа - 0, а координационное число - 5. (Тогда в оксоферрат-анионе (FeO4)2- к. ч. железа равно 4.


Ответ от Просвещение [гуру]
2 и 3 да может


Ответ от Невролог [гуру]
Валентность, точнее степени окисления у Fe +2. +3 и +6. Естественно, она может изменяться. Самая устойчивая +3.


Валентность - это способность атома данного элемента образовывать определенное количество химических связей.

Образно говоря, валентность - это число "рук", которыми атом цепляется за другие атомы. Естественно, никаких "рук" у атомов нет; их роль играют т. н. валентные электроны.

Можно сказать иначе: валентность - это способность атома данного элемента присоединять определенное число других атомов.

Необходимо четко усвоить следующие принципы:

Существуют элементы с постоянной валентностью (их относительно немного) и элементы с переменной валентностью (коих большинство).

Элементы с постоянной валентностью необходимо запомнить:


Остальные элементы могут проявлять разную валентность.

Высшая валентность элемента в большинстве случаев совпадает с номером группы, в которой находится данный элемент.

Например, марганец находится в VII группе (побочная подгруппа), высшая валентность Mn равна семи. Кремний расположен в IV группе (главная подгруппа), его высшая валентность равна четырем.

Следует помнить, однако, что высшая валентность не всегда является единственно возможной. Например, высшая валентность хлора равна семи (убедитесь в этом!), но известны соединения, в которых этот элемент проявляет валентности VI, V, IV, III, II, I.

Важно запомнить несколько исключений : максимальная (и единственная) валентность фтора равна I (а не VII), кислорода - II (а не VI), азота - IV (способность азота проявлять валентность V - популярный миф, который встречается даже в некоторых школьных учебниках).

Валентность и степень окисления - это не тождественные понятия.

Эти понятия достаточно близки, но не следует их путать! Степень окисления имеет знак (+ или -), валентность - нет; степень окисления элемента в веществе может быть равна нулю, валентность равна нулю лишь в случае, если мы имеем дело с изолированным атомом; численное значение степени окисления может НЕ совпадать с валентностью. Например, валентность азота в N 2 равна III, а степень окисления = 0. Валентность углерода в муравьиной кислоте = IV, а степень окисления = +2.

Если известна валентность одного из элементов в бинарном соединении, можно найти валентность другого.

Делается это весьма просто. Запомните формальное правило: произведение числа атомов первого элемента в молекуле на его валентность должно быть равно аналогичному произведению для второго элемента .

В соединении A x B y: валентность (А) x = валентность (В) y


Пример 1 . Найти валентности всех элементов в соединении NH 3 .

Решение . Валентность водорода нам известна - она постоянна и равна I. Умножаем валентность Н на число атомов водорода в молекуле аммиака: 1 3 = 3. Следовательно, для азота произведение 1 (число атомов N) на X (валентность азота) также должно быть равно 3. Очевидно, что Х = 3. Ответ: N(III), H(I).


Пример 2 . Найти валентности всех элементов в молекуле Cl 2 O 5 .

Решение . У кислорода валентность постоянна (II), в молекуле данного оксида пять атомов кислорода и два атома хлора. Пусть валентность хлора = Х. Составляем уравнение: 5 2 = 2 Х. Очевидно, что Х = 5. Ответ: Cl(V), O(II).


Пример 3 . Найти валентность хлора в молекуле SCl 2 , если известно, что валентность серы равна II.

Решение . Если бы авторы задачи не сообщили нам валентность серы, решить ее было бы невозможно. И S, и Cl - элементы с переменной валентностью. С учетом дополнительной информации, решение строится по схеме примеров 1 и 2. Ответ: Cl(I).

Зная валентности двух элементов, можно составить формулу бинарного соединения.

В примерах 1 - 3 мы по формуле определяли валентность, попробуем теперь проделать обратную процедуру.

Пример 4 . Составьте формулу соединения кальция с водородом.

Решение . Валентности кальция и водорода известны - II и I соответственно. Пусть формула искомого соединения - Ca x H y . Вновь составляем известное уравнение: 2 x = 1 у. В качестве одного из решений этого уравнения можно взять x = 1, y = 2. Ответ: CaH 2 .

"А почему именно CaH 2 ? - спросите вы. - Ведь варианты Ca 2 H 4 и Ca 4 H 8 и даже Ca 10 H 20 не противоречат нашему правилу!"

Ответ прост: берите минимально возможные значения х и у. В приведенном примере эти минимальные (натуральные!) значения как раз и равны 1 и 2.

"Значит, соединения типа N 2 O 4 или C 6 H 6 невозможны? - спросите вы. - Следует заменить эти формулы на NO 2 и CH?"

Нет, возможны. Более того, N 2 O 4 и NO 2 - это совершенно разные вещества. А вот формула СН вообще не соответствует никакому реальному устойчивому веществу (в отличие от С 6 Н 6).

Несмотря на все сказанное, в большинстве случаев можно руководствоваться правилом: берите наименьшие значения индексов.


Пример 5 . Составьте формулу соединения серы с фтором, если известно, что валентность серы равна шести.

Решение . Пусть формула соединения - S x F y . Валентность серы дана (VI), валентность фтора постоянна (I). Вновь составляем уравнение: 6 x = 1 y. Несложно понять, что наименьшие возможные значения переменных - это 1 и 6. Ответ: SF 6 .

Вот, собственно, и все основные моменты.

А теперь проверьте себя! Предлагаю пройти небольшой тест по теме "Валентность" .

Одной из важных в изучении школьных тем является курс, касающийся валентности. Об этом пойдет речь в статье.

Валентность – что это такое?

Валентность в химии означает свойство атомов химического элемента привязывать к себе атомы другого элемента. В переводе с латыни – сила. Выражается она в числах. Например, валентность водорода всегда будет равняться единице. Если взять формулу воды – Н2О, ее можно представить в виде Н – О – Н. Один атом кислорода смог связать с собой два атома водорода. Значит, количество связей, которые создает кислород, равно двум. И валентность этого элемента будет равняться двум.

В свою очередь, водород будет двухвалентным. Его атом может быть соединен только с одним атомом химического элемента. В данном случае с кислородом. Говоря точнее, атомы в зависимости от валентности элемента, образуют пары электронов. Сколько таких пар образовано – таковой и будет валентность. Числовое значение именуется индексом. У кислорода индекс 2.

Как определить валентность химических элементов по таблице Дмитрия Менделеева

Посмотрев на таблицу элементов Менделеева, можно заметить вертикальные ряды. Их называют группами элементов. От группы зависит и валентность. Элементы первой группы имеют первую валентность. Второй – вторую. Третьей – третью. И так далее.

Есть также элементы с постоянным индексом валентности. Например, водород, группа галогенов, серебро и так далее. Их необходимо выучить обязательно.


Как определить валентность химических элементов по формулам?

Иногда сложно определить по таблице Менделеева валентность. Тогда нужно смотреть конкретную химическую формулу. Возьмем оксид FeO. Здесь и у железа, как у кислорода, индекс валентности будет равняться двум. А вот в оксиде Fe2O3 – по-другому. Железо будет трехвалентным.


Нужно помнить всегда разные способы определения валентности и не забывать их. Знать постоянные ее числовые значения. У каких элементов они есть. И, конечно, пользоваться таблицей химических элементов. А также изучать отдельные химические формулы. Лучше представлять их в схематическом виде: Н – О – Н, например. Тогда видны связи. И количество черточек (тире) будет числовым значением валентности.