Что такое ионообменная смола? Смола для умягчения воды. Общие понятия Как работают ионообменные смолы

Синтетические высокомолекулярные (полимерные) органические иониты - высокомолекулярные синтетические соединения с трехмерной гелевой и макропористой структурой, которые содержат функциональные группы кислотного характера, способные к реакциям ионного обмена. Ионообменная смола представляет собой скопление достаточно мелких шариков, именуемых для простоты "смолой". Внешне такая смола может напоминать рыбью икру. Однако, эта "икра" обладает уникальными свойствами. Шарики смолы способны улавливать из воды ионы различных веществ и "впитывать" их в себя, отдавая взамен "запасенные" ранее ионы. Таким образом осуществляется ионный обмен - отсюда и обобщающее название этих смол - "ионообменные" или более по научному "иониты".

Свойства

Ионообменные смолы представляют собой твёрдые полимеры, нерастворимые, ограниченно набухающие в растворах электролитов и органических растворителях. Они способны к ионному обмену в водных и водноорганических растворах.

Макропористые смолы гетерогенны; их частицы имеют губчатую структуру, т. е. пронизаны системой сквозных пор, средний диаметр которых намного превышает размеры молекул растворителя и обменивающихся ионов. Раствор электролита свободно проникает по порам внутрь частиц таких ионообменных смол, что значительно облегчает ионный обмен, особенно в неводных средах.

Ионообменные смолы можно рассматривать как нерастворимые полиэлектролиты. Поливалентный (многозарядный) ион, образующий структурный каркас ионообменной смолы , практически неподвижен из-за огромной молекулярной массы. Этот ион-каркас, или ион-сетка, связывает малые подвижные ионы противоположного знака (противоионы), которые способны к эквивалентному обмену на ионы окружающего раствора. Средний размер частиц таких ионообменных смол составляет 0,2-2,0 мм , насыпная масса 0,5-0,9 т /м 3 .

Некоторые типы ионитов обладают способностью вступать в реакции комплексообразования, окисления-восстановления, а также способностью к физической сорбции ряда соединений.

Важнейшим показателем ионообменных смол является влажность, так как в силу гидрофильности функциональных групп ионообменных смол влага, содержащаяся в смоле, является "химически связанной". Причем специальное удаление этой влаги приведет при последующем использовании смолы только к физическому разрушению гранул. "Внешняя" же влага, не связанная химически с функциональной группой смолы, как правило, удаляется перед упаковкой или с помощью центрофугирования или фильтрования.

Следующей важной характеристикой ионообменных смол является ионообменная емкость - весовая, объемная и рабочая .

Весовая и объемная емкости являются стандартными показателями, определяются в лабораторных условиях по стандартным методикам и указываются в паспортных данных на готовую продукцию.

В то же время, рабочая ионообменная емкость не может быть измерена в лабораторных условиях, так как зависит от геометрических размеров слоя смолы и от конкретных характеристик обрабатываемых растворов (уровня регенерации, скорости потоков, концентрации растворенных веществ, требуемых показателей качества обрабатываемого раствора, точного размера частиц).

Классификация

В соответствии с общей классификацией ионитов ионообменные смолы делят на катионообменные (поликислоты), анионообменные (полиоснования) и амфотерные, или биполярные (полиамфолиты). Катионообменные смолы бывают сильно- и слабокислотные, анионообменные - сильно- и слабоосновные. Если носителями электрических зарядов молекулярного каркаса ионообменной смолы являются фиксированные ионы (функциональные, или ионогенные, группы) только одного типа, например сульфогруппы, то такие ионообменные смолы называются монофункциональными. Если же смолы содержат разнотипные ионогенные группы, они называются полифункциональными. По структурному признаку различают микропористые, или гелевидные, и макропористые ионообменные смолы . Частицы гелевидных смол гомогенны; ионный обмен в системе гелевидная смола - раствор электролита возможен лишь благодаря диффузии обменивающихся ионов сквозь молекулярную сетку набухшего ионита.

Иониты имеют гелевую, макропористую и промежуточную структуру.

Гелевые иониты лишены истинной пористости и способны к ионному обмену только в набухшем состоянии.

Макропористые иониты обладают развитой поверхностью из-за наличия пор и поэтому способны к ионному обмену как в набухшем, так и в ненабухшем состоянии.

Гелевые иониты характеризуются большей обменной емкостью, чем макропористые , но уступают им по осмотической стабильности, химической и термической стойкости.

Иониты представлены анионитами - материалами, способными к обмену анионов, и катионитами - материалами, обменивающими катионы.

Ионообменные смолы относятся к следующим классам:

  • Катионнообменные смолы (катиониты) - содержат кислотные группы
  • Анионообменные смолы (аниониты) - содержат основные группы
  • Амфотерные ионообменные смолы - содержат одновременно и кислотные, и основные группы
  • Селективные ионообменные смолы - содержат комплексообразующие группы
  • Окислительно-восстановительные смолы - содержат функциональные группы, способные к изменению зарядов ионов

АНИОНИТЫ подразделяются на:

  • сильноосновные , способные к обмену анионов любой степени диссоциации в растворах при любых значениях рН;
  • слабоосновные , способные к обмену анионов из растворов кислот при рН 1-6;
  • промежуточной и смешанной активности .

КАТИОНИТЫ подразделяются на:

  • сильнокислотные , обменивающие катионы в растворах при любых значениях рН;
  • слабокислотные , способные к обмену катионов в щелочных средах при рН > 7.

Кроме того, ионообменные смолы могут содержать группы различных классов, относясь к полифункциональным смолам.

По структуре матрицы ионообменные смолы делятся на:

  • гелевые - микропоры имеют молекулярные размеры. Они представляют собой гомогенные поперечносвязанные полимеры. Фиксированные ионы равномерно распределены по всему объему полимера. Гелевые ионообменные смолы обладают высокой обменной емкостью, однако характеризуются невысокой скоростью обмена
  • макропористые - размеры пор смолы имеют размеры в десятки нанометров. Имеют фиксированную систему пор и каналов, определяемую условиями синтеза. Обменная ёмкость таких смол меньше, чем гелевых при высокой скорости обмена

Методы получения ионообменных смол

Получают ионообменные смолы полимеризацией, поликонденсацией или путём полимераналогичных превращений, так называемой химической обработкой полимера, не обладавшего до этого свойствами ионита. Среди промышленных ионообменных смол широкое распространение получили смолы на основе сополимеров стирола и дивинилбензола. В их числе сильнокислотные катиониты, сильно- и слабоосновные аниониты. Основным сырьём для промышленного синтеза слабокислотных катионообменных смол служат акриловая и метакриловая кислоты и их эфиры. В больших количествах производят также ионообменные смолы на основе феноло-альдегидных полимеров, полиаминов и др. Направленный синтез ионообменных смол позволяет создавать материалы с заданными технологическими характеристиками.

Как правило, ионообменные смолы получают методами полимеризации или полимераналогичных превращений.

Для получения ионообменных смол методом полимеризации используют мономеры, содержащие ионогенные группы. В случае полимераналогичных превращений ионогенные группы вводятся в инертный полимер.

Возможен синтез ионообменных смол способом поликонденсации, однако эти ионообменные смолы имеют менее однородную структуру, меньшую осмотическую стабильность и химическую стойкость.

Чаще всего используются сетчатые полимеры. Их получают суспензионной полимеризацией стирола, производных акриловой кислоты, винилпиридинов с диенами.

Как правило, иониты выпускаются в солевых (натриевая, хлористая) или смешанно-солевых формах (натрий-водородная, гидроксильно-хлоридная). Кроме того, выпускаются иониты, практически полностью переведенные в рабочую форму (водородную, гидроксильную и др.). Выпускаются также готовые смеси ионитов для использования в фильтрах смешанного действия.

Применение

Ионообменные смолы применяются в водоочистке с 60-х годов XX века, но особенное распространение получили в конце 80-х - в 90-х годах.

Ионообменные смолы используют для обессоливания воды, извлечения и разделения редких элементов, очистки продуктов органического и неорганического синтеза и др.

Ионообменные смолы в основном применяются:

  • для умягчения и обессоливания воды в теплоэнергетике и других отраслях;
  • для разделения и выделения цветных и редких металлов в гидрометаллургии;
  • при очистке возвратных и сточных вод;
  • для регенерации отходов гальванотехники и металлообработки;
  • для разделения и очистки различных веществ в химической промышленности;
  • в качестве катализатора для органического синтеза.

Ионообменные смолы используются в котельных, теплоэлектростанциях, атомных станциях, пищевой промышленности (при производстве сахара, алкогольных, слабоалкогольных и других напитков, пива, бутилированной воды), фармацевтической промышленности и других отраслях.

Применение ионообменной смолы, на сегодняшний день, весьма разнообразно. Но самая важная задача, с которой ионообменная смола способна справиться на отлично, — это смягчение воды. Благодаря своей смягчающей способности, использование ее в бытовых приборах, имеющих контакт с водой, просто необходимость. Давайте разберемся, чем уникальна ионообменная смола, и возможно ли обойтись без нее.

Ионообменная смола

Итак, мы определились, что ионообменная смола необходима для умягчения воды для бытовых нужд. То есть, увлажнитель воздуха, бытовой фильтр для очистки воды, стиральная машина, котлы для отопления. Список можно продолжить, но важно понять, что умягчение воды необходимо там, где она подвержена нагреву, вследствие чего может образовываться накипь, приводящая в негодность бытовые приборы, а также бытовые проточные фильтры.

Основные моменты, с которыми может столкнуться каждый:

Жесткость воды способна не только выводить из строя Ваши бытовые приборы, но и нанести вред Вашему здоровью.

Раздражение, сухость и зуд кожи, вследствие засорения кожных пор солями жирных кислот, которые, при реакции взаимодействии мыла с солями жесткости воды являются нерастворимыми.

Ломкость, сухость волос и повреждение их естественной правильной структуры.

Раздражение и пересушивание кожи головы, что приводит к появлению перхоти и неприятным ощущениям.

Большой расход моющих средств (в среднем, 3 раза выше).

Наличие налета на Вашей сантехнике в ванной комнате и на кухне

Большой расход электроэнергии, так как наличие накипи на нагревательных элементах увеличивает потребляющую мощность приборов.

Что же представляет собой ионообменная смола?

Ионообменная смола – полимерные смоляные шарики, диаметр которых менее

картридж фильтра для воды с ионообменной смолой

миллиметра. Шарики смолы имеют способность к улавливанию из воды ионов различных веществ, и адсорбировать их в себя, обменивая на свои, смоляные, ионы. Таким образом, происходит ионный обмен, соответственно и смола – ионообменной.

Есть иное название ионообменной смолы – ионит. А именно, — нерастворимое высокомолекулярное соединение, которое способно вступать в реакции обмена с ионами загрязненной или жесткой воды. Иониты имеют гелевую основу, в связи с этим, способны к ионному обмену только в набухшем состоянии. Существуют также и макропористые иониты. Существенное отличие их в том, что они имеют поры по всей своей поверхности что означает — ионный обмен возможен как в набухшем, так и в не набухшем. Гелевые иониты обладают большей обменной емкостью, а макропористые, — лидируют в осмотической стабильности, химической и термической стойкости.

Иониты находят применение в пищевой, фармацевтической, медицинской отросли. Выпускаются, как правило, уже готовые смеси ионитов для использования в фильтрах (для увлажнителей, фильтров для воды как питьевых, так и специального назначения для бытовых приборов).

Принцип действия ионообменных смол.

Рабочее состояние ионообменной смолы – это набухание. При производстве смоляным


ионообменная смола для увлажнителей воздуха

шарикам придают воздушно-сухое состояние. Размеры смоляных шариков могут колебаться от 0,5 мм до 4мм. При взаимодействии с водой шарики набухают, напитываясь водой. Набухание шариков приводит, соответственно, к увеличению их в размере.

При прохождении воды сверху вниз через слой ионообменной смолы происходит её смягчение. Процесс прохождения воды через ионообменную смолу проходит в несколько этапов. Это обуславливается наличием нескольких слоев смолы: работающий, истощающий и свежий. Работающим слоем является, собственно зоной смягчения. Далее, вода

колбовый фильтр заправленный ионообменной смолой

проходит сквозь следующий слой, который со временем истощается, теряя обменную способность. Попадая в последний слой, свежий слой. Во всех слоях ионообменной смолы, которые проходит вода, происходит ее смягчение. Но расписывая данные слои, мы хотели обратить Ваше внимание на то, что картриджи, наполненные ионообменной смолой необходимо периодически менять. Необходимо это того, чтобы Вы смогли получить максимальный эффект от использования фильтров на основе ионообменной смолы. Рекомендовано производить замену картриджа не реже одного раза в 3-6 месяцев.

Подводя итог, можно обобщить выше сказанное. Ионообменная смола способна задерживать любой химический элемент и его соединения. При очистке воды ионообменной смолой удаляются соли жесткости, а именно кальций и магний, которые имеют свойство образовывать накипь на водонагревательных элементах. А значит, удаление жесткости воды и называется ее умягчением.

Как правило, фильтры, содержащие ионообменную смолу, устанавливаются перед водонагревательными аппаратами (котел, газовая колонка, проточный водонагреватель, бойлерами, прочее). Также, применяется в бытовых системах очистки воды. Возможна установка фильтра со смолой и на весь дом в комплексе с фильтрами механической угольной очистки. Обычно применяется двухступенчатая или трехступенчатая система колбовых фильтров, установленных последовательно.

Ионообменные смолы не являются токсичными, взрывоопасными и пожароопасными веществами. Ионообменные смолы безопасны, поэтому не могут нанести вред здоровью человека.

Для снижения концентрации солей тяжелых металлов и предотвращения появления накипи на посуде и бытовой технике применяют умягчители воды, из которых самыми распространенными умягчителями являются . В статье мы разберем принципы их работы, разновидности и предназначение в очистительной системе.


Из этой статьи вы узнаете:

    Для чего нужны ионообменные смолы для воды

    Можно ли пить воду после применения ионообменной смолы для очистки воды

    Как заменить ионообменную смолу для очистки воды в умягчителе

Как выглядят ионообменные смолы для очистки воды

Применение ионообменных смол в фильтрующих системах частного жилого сектора давно считается необходимым условием для получения качественной питьевой воды. Пик популярности этого способа очистки приходится на конец ХХ века.

С виду, ионообменная смола – это скопление мелких шариков (до 1 мм в диаметре), которые производят из полимерных материалов.


Тот, кто никогда не сталкивался с этим материалом, с легкостью может перепутать смолу с рыбьей икрой. Пользу и его уникальные характеристики нельзя игнорировать. Использование ионообменных смол для умягчения воды позволяет задерживать ионы примесей металлов и солей жесткости. Но такой фильтр не просто накапливает в себе все эти вещества, а заменяет ионы вредных веществ на абсолютно безопасные. Эта процедура замены ионов и закрепила существующее название фильтрующей среды (ионообменные смолы).

В химии ионообменные смолы относят к ионитам (высокомолекулярное соединение, имеющее функциональные группы, которые, в свою очередь, способны вступать в реакцию обмена с ионами какой-либо жидкости). Отдельные группы ионитов способны также вступать в окислительные реакции, процессы восстановления и физической сорбции.

По своей структуре ионообменные смолы бывают пористыми, гелевыми или промежуточными.

Смолы с гелевой структурой не содержат пор. Обмен ионами в такой структуре возможен лишь в тот момент, когда смола набухает и становится похожей (по консистенции) на гель.

Пористая структура получила свое название благодаря огромному количеству пор на поверхности смолы. Эти поры как раз и позволяют произвести ионный обмен.

В промежуточной структуре ионообменных смол соединены свойства как пористой, так и гелевой структуры.

Все эти разновидности смол имеют принципиальные различия. У гелевых – наибольшая обменная емкость, тогда как смолы с пористой структурой обладают высокой стойкостью к химическим и термическим воздействиям. Такая стойкость позволяет смолам с пористой структурой поглощать больше примесей независимо от температуры воды.

Кроме этого, ионообменные смолы для очистки воды разделяют по заряду ионов. При обмене катионов (положительно заряженных ионов) смолу называют катионитом. В случае обмена анионами (отрицательно заряженными ионами) – анионитами. На практике суть различия по этому признаку сводится к способности обмена ионов в водной среде с разным уровнем pH. У анионитов «рабочей» считается среда с рН от 1 до 6, в то время как у катионитов процессы протекают в среде с рН от 7 и более. Конечно же, пользователям необязательно разбираться в таких тонкостях работы фильтров. В выборе необходимого типа фильтрующего устройства вам должны помогать специалисты в этой области.

В большинстве случаев ионообменная смола, находящаяся в фильтрующих системах, содержит большое количество ионов солей хлора или натрия. В некоторых случаях такая смола состоит из смеси солей с другими элементами (натрий-водород, гидроксил-хлорид и др.).

В зависимости от параметров, ионообменные смолы для умягчения воды могут отличаться друг от друга. Одним из таких показателей является влажность. Оптимально, когда влажность сведена к минимуму. Поэтому производители стараются извлечь влагу из смолы еще до момента ее упаковки. Для этого используют специальные центрифуги.

Ионообменные смолы оценивают также по уровню их емкости. Эта характеристика показывает, сколько ионов в исходной среде приходится на единицу массы (объема смолы). Сравнивая смолы по этому признаку, выделяют три вида емкости: рабочую, объемную и весовую. Объемная, как и весовая, являются стандартными величинами, то есть их параметры определяют в лаборатории, а полученные данные записывают в характеристики готовых продуктов.

В отличие от двух предыдущих, рабочая емкость не подлежит измерениям, поскольку имеет много условностей (степень чистоты воды, толщина слоя смолы, сила потока воды и др.). Со временем ионы рабочей среды полностью заменяются ионами примесей, содержащихся в воде. В таком случае рабочая емкость подлежит восстановлению.

Для чего нужны ионообменные смолы

По поводу основной цели использования ионообменных смол для воды существует много мифов. Согласитесь, применять эти смолы в составе бытовых фильтров лишь для улучшения вкуса жидкости – достаточно затратное решение. Сомнения вызывает и необходимость в изменении ионного состава воды, так как некоторые вредные примеси в ней все равно остаются.

Тем не менее целей, которые достигаются путем использования ионообменных смол для воды, немало. И, пожалуй, главной из них является смягчение воды. Эта способность ионообменных смол позволяет рекомендовать их для применения с приборами бытовой техники и других домашних устройств, имеющих непосредственный контакт с водой.

Кроме прямой пользы для здоровья (использование воды для питья или приготовления пищи), смягченная жидкость позволяет продлить срок использования бытовой техники, имеющей непосредственный контакт с водой. Это стиральные и посудомоечные машины, водонагреватели, утюги, отопительные котлы, водоочистительные фильтры, увлажнители, очистители воздуха и другие приборы. Особенно важно использование смягченной воды с приборами, которые нагревают саму жидкость. Жесткая вода – самая главная причина появления накипи и последующего выхода прибора из строя.


Можно ли пить воду после ионообменной смолы

Важно понимать, что основное назначение ионообменных смол – это смягчение воды. В процессе фильтрации происходит замена ионов кальция и магния, способных создавать нерастворимые соединения, на ионы хлора, натрия и другие элементы, которые создают легкорастворимые соединения.

На протяжении всей своей истории человечество вполне успешно училось приспосабливаться к новым природным источникам воды. Различия химического состава жидкости и большое количество этих источников покрывались отличной адаптацией организма человека ко всем внешним факторам.

Организм сам выводил все «лишнее». Несмотря на большое количество информации о накоплении нерастворимых солей магния и калия в нашем организме и причиняемом ими вреде, каких-либо реальных доказательств этих данных не существует. Это подтверждается еще и тем фактом, что для людей с нарушенными обменными процессами в организме полностью очищенная вода критически опасна. Все необходимые нам элементы относительно здоровый организм способен был извлечь из потребляемой нами воды и пищи.

Но это правило было актуально до всеобщей индустриализации общества, до появления так называемой техногенной среды. Даже природные источники воды в большинстве своем имеют повышенное содержание ионов тяжелых металлов, различные нежелательные органические примеси и даже изотопы радиоактивных элементов. Было бы здорово иметь такой фильтр, который смог бы заменять подобные примеси на ионы естественного происхождения. Но, к сожалению, ионообменные фильтры на такое неспособны.

В большинстве случаев изготовители ионообменных фильтров за счет рекламных слоганов предлагают заменить одни ненужные нам микроэлементы на другие.

Определить, насколько действительно важно менять ионный состав воды с помощью ионообменных фильтров, не так уж и просто. Посмотрите на ситуацию с посудомоечными и стиральными машинами. Для длительной эксплуатации этих приборов очень важна степень жесткости воды. Чем она меньше, тем меньше и вероятность появления накипи на тэне, и, соответственно, выхода прибора из строя. Но производители этих бытовых приборов давно уже нашли простой выход – применение химического способа смягчения воды путем добавления умягчителей в состав моющих средств.

Можно вспомнить о чайниках и кастрюлях, в которых кипятится вода, благополучно нами потребляемая. Но степень воздействия «жесткой» воды на наш организм досконально не изучена, чтобы говорить о каких-либо выгодах применения фильтров с ионообменными смолами.

Но давайте обсудим, на что же способны фильтры, содержащие ионообменные смолы для очистки воды. Не будем останавливаться на химических процессах, происходящих в этой жидкости, после прохождения через такой фильтр. То, что реально беспокоит потребителей, – это присутствие в воде ионов тяжелых металлов. Большинство трубопроводов в настоящее время состоит не из пластиковых труб (о которых лет 30–40 назад у нас мало кто слышал), а из металлических. Раньше при поломке одного из участков такой трубы или целой секции производили замену трубы на стальную оцинкованную.

Эти трубы до сих пор являются основным «поставщиком» ионов цинка и свинца в наш дом. Если проанализировать степень очистки воды бытовыми ионообменными фильтрами от ионов этих металлов, то окажется, что эта степень близка к нулю. По-настоящему действенные элементы, задерживающие эти вредоносные ионы, существуют, но они устанавливаются на крупных промышленных предприятиях, цель которых уловить дорогостоящие химические соединения. Из-за большой дороговизны подобного оборудования вероятность его применения в бытовых фильтрах очень низка.

Замена ионообменной смолы в умягчителе воды

Не стоит забывать, что любая система очистки воды со временем для обеспечения безотказной работы нуждается в активном вмешательстве человека. Мы говорим не о систематических сменах малоэффективных картриджей или постоянной подсыпке регенерационной соли. Такие меры нельзя назвать трудозатратными, но и их эффективность не так высока. Речь идет о процедуре полной смены фильтрующей массы в обезжелезивателе или смягчителе воды. Такой процесс может потребовать много усилий.

Использование различных засыпных фильтров для собственного коттеджа предполагает процедуру периодической дозасыпки фильтрующего элемента и полной его замены по истечении нескольких лет эксплуатации. О необходимости такой замены вы узнаете по ухудшению органолептических показателей поступаемой воды.

Это выражается в увеличении количества двухвалентного железа, когда регенеративные способности засыпки исчерпываются (нет должного эффекта). Похожая ситуация наблюдается и со смягчителями воды. Через определенный период система очистки начинает давать сбои, и вода снова становится жесткой, со всеми вытекающими последствиями.

В этом случае пользователи стоят перед выбором: сделать все самостоятельно или вызвать компанию, которая на этом специализируется.

Конечно, просто засыпать подложку из гравия и фильтрующую загрузку не так уж и сложно, но выгрузить отработанный наполнитель – занятие не из простых.

Многие популярные засыпные фильтры, используемые владельцами загородных коттеджей, основаны на использовании емкостей из стеклопластика. И это неудивительно, поскольку этот материал не гниет, не ржавеет, он легок и прочен. Но в то же время в таких емкостях не предусмотрены ни система слива, ни какие-либо транспортировочные отверстия для ее переноски. Отключив эту емкость от трубопровода и сняв управляющий клапан, нужно будет приложить невероятные усилия по переносу отяжеленного фильтра из дома во двор.

Если эта задача вам удалась, то можно приступать к выгрузке:

    Изъятый фильтр боком укладывают на ровную, возвышенную поверхность.

    К горловине водоподъемной трубки хомутом присоединяют крепкий шланг, через который под определенным напором подается вода.

    Вместе с взрыхленной засыпкой вода вытекает из емкости фильтра.

    После того как емкость будет освобождена, из смягчителя или фильтра достается водоподъемная трубка.

    Затем проводят повторную промывку емкости и заносят ее обратно в дом.

Но если вы не хотите тратить свое время и силы, то на российском рынке присутствует немало компаний, которые занимаются разработкой и обслуживанием систем водоочистки. Самостоятельно, без помощи профессионала, выбрать тот или иной вид фильтра воды довольно сложно. И уж тем более не стоит пытаться смонтировать систему водоочистки самостоятельно, даже если вы прочитали несколько статей в Интернете и вам кажется, что вы во всем разобрались.

Надежнее обратиться в компанию по установке фильтров, которая предоставляет полный спектр услуг – консультацию специалиста, анализ воды из скважины или колодца, подбор подходящего оборудования, доставку и подключение системы. Кроме того, важно, чтобы компания предоставляла и сервисное обслуживание фильтров.

Наша компания Biokit предлагает широкий выбор систем обратного осмоса, фильтры для воды и другое оборудование, способное вернуть воде из-под крана ее естественные характеристики.

Специалисты нашей компании готовы помочь вам:

    подключить систему фильтрации самостоятельно;

    разобраться с процессом выбора фильтров для воды;

    подобрать сменные материалы;

    устранить неполадки или решить проблемы с привлечением специалистов-монтажников;

    найти ответы на интересующие вопросы в телефонном режиме.

Доверьте очистку воды системам от Biokit – пусть ваша семья будет здоровой!

Рис.Сравнение полной динамической ПДОЕ и динамической обменной емкости ДОЕ. Заштрихованная площадь А соответствует ДОЕ, а вся площадь над кривой с учетом проскока солей - ПДОЕ

Селективность

Под селективностью понимают способность избирательно сорбировать ионы из растворов сложного состава. Селективность определяется типом ионогенных групп, числом поперечных связей матрицы ионита, размером пор и составом раствора. Для большинства ионитов селективность невелика, однако разработаны специальные образцы, имеющие высокую способность к извлечению определенных ионов.

Механическая прочность

Показывает способность ионита противостоять механическим воздействиям. Иониты проверяются на истираемость в специальных мельницах или по весу груза, разрушающего определенное число частиц. Все полимеризационные иониты имеют высокую прочность. У поликонденсационных она существенно ниже. Увеличение степени сшивки полимера повышает его прочность, но ухудшает скорость ионного обмена.

Осмотическая стабильность.

Наибольшее разрушение частиц ионитов происходит при изменении характеристик среды, в которой они находятся. Поскольку все иониты представляют собой структурированные гели, их объем зависит от солесодержания, рН среды и ионной формы ионита. При изменении этих характеристик объем зерна изменяется. Вследствие осмотического эффекта объем зерна в концентрированных растворах меньше, чем в разбавленных. Однако это изменение происходит не одновременно, а по мере выравнивания концентраций «нового» раствора по объему зерна. Поэтому внешний слой сжимается или расширяется быстрее, чем ядро частицы; возникают большие внутренние напряжения и происходит откалывание верхнего слоя или раскалывание всего зерна. Это явление называется «осмотический шок». Каждый ионит способен выдерживать определенное число циклов таких изменений характеристик среды. Это называется его осмотической прочностью или стабильностью.

Наибольшее изменение объема происходит у слабокислотных катионитов. Наличие в структуре зерен ионита макропор увеличивает его рабочую поверхность, ускоряет перенабухание и дает возможность «дышать» отдельным слоям. Поэтому наиболее осмотически стабильны сильнокислотные катиониты макропористой структуры, а наименее - слабокислотные катиониты.

Осмотическая стабильность определяется как количество целых зерен, отнесенное к общему первоначальному их числу, после многократной (150 раз) обработки навески ионита попеременно в растворе кислоты и щелочи с промежуточной отмывкой обессоленной водой.

Химическая стабильность

Все иониты обладают определенной стойкостью к растворам кислот, щелочей и окислителей. Все полимеризационные иониты имеют большую химическую стойкость, чем поликонденсационные. Катиониты более стойки, чем аниониты. Среди анионитов слабоосновные устойчивее к действию кислот, щелочей и окислителей, чем сильноосновные.

Температурная устойчивость

Температурная устойчивость катионитов выше, чем анионитов. Слабокислотные катиониты работоспособны при температуре до 130 ° С, сильнокислотные типа КУ-2-8 - до 100-120 ° С, а большинство анионитов - не выше 60, максимум 80 ° С. При этом, как правило, Н- или ОН-формы ионитов менее стойки, чем солевые.

Свойства

Ионообменные смолы представляют собой твёрдые полимеры , нерастворимые, ограниченно набухающие в растворах электролитов и органических растворителях. Они способны к ионному обмену в водных и водноорганических растворах.

Ионообменные смолы получают путем полимеризации или поликонденсации.

Классификация

Ионообменные смолы относятся к следующим классам:

  • Катионнообменные смолы (катиониты) - содержат кислотные группы
  • Анионообменные смолы (аниониты) - содержат основные группы
  • Амфотерные ионообменные смолы - содержат одновременно и кислотные, и основные группы
  • Селективные ионообменные смолы - содержат комплексообразующие группы
  • Окислительно-восстановительные смолы - содержат функциональные группы, способные к изменению зарядов ионов

Кроме того, ионообменные смолы могут содержать группы различных классов, относясь к полифункциональным смолам.

По структуре матрицы ионообменные смолы делятся на:

  • гелевые - микропоры имеют молекулярные размеры. Они представляют собой гомогенные поперечносвязанные полимеры. Фиксированные ионы равномерно распределены по всему объему полимера. Гелевые ионообменные смолы обладают высокой обменной емкостью, однако характеризуются невысокой скоростью обмена
  • макропористые - размеры пор смолы имеют размеры в десятки нанометров. Имеют фиксированную систему пор и каналов, определяемую условиями синтеза. Обменная ёмкость таких смол меньше, чем гелевых при высокой скорости обмена

Методы получения ионообменных смол

Как правило, ионообменные смолы получают методами полимеризации или полимераналогичных превращений.

Для получения ионообменных смол методом полимеризации используют мономеры, содержащие ионогенные группы. В случае полимераналогичных превращений ионогенные группы вводятся в инертный полимер.

Возможен синтез ионообменных смол способом поликонденсации, однако эти ионообменные смолы имеют менее однородную структуру, меньшую осмотическую стабильность и химическую стойкость.

Чаще всего используются сетчатые полимеры. Их получают суспензионной полимеризацией стирола , производных акриловой кислоты , винилпиридинов с диенами .

Применение

Ионообменные смолы в основном применяются:

  • для умягчения и обессоливания воды в теплоэнергетике и других отраслях;
  • для разделения и выделения цветных и редких металлов в гидрометаллургии;
  • при очистке возвратных и сточных вод;
  • для регенерации отходов гальванотехники и металлообработки;
  • для разделения и очистки различных веществ в химической промышленности;
  • в качестве катализатора для органического синтеза.

Ионообменные смолы используются в котельных, теплоэлектростанциях, атомных станциях, пищевой промышленности (при производстве сахара, алкогольных, слабоалкогольных и других напитков, пива, бутилированной воды), фармацевтической промышленности и других отраслях.

Литература

  • Даффа реакция - Меди // Химическая энциклопедия в 5 томах. - М.: Большая Российская Энциклопедия, 1990. - Т. 2. - 671 с.

Wikimedia Foundation . 2010 .

Смотреть что такое "Ионообменные смолы" в других словарях:

    Большой Энциклопедический словарь

    - (сетчатые полиэлектролиты, ионообменные сорбенты, ионообменные полимеры), синтетич. орг. иониты. Твердые нерастворимые, ограниченно набухающие в р рах электролитов и орг. р рителях полимеры, способные к ионному обмену в водных и водно орг. р рах … Химическая энциклопедия

    Синтетические органические иониты. Смолы, обменивающие с ионами внешней среды отрицательно заряженные ионы, называются анионообменными, положительно заряженные ионы катионообменными, а одновременно ионы того и другого знака полиамфолитами.… … Энциклопедический словарь

    ионообменные смолы - Ion Exchange Resins Ионообменные смолы Синтетические иониты, полученные путем полимеризации или поликонденсации иономеров, содержащих активные группы, способные обмениваться ионами с раствором. Активные группы могут также вводится в готовый… … Толковый англо-русский словарь по нанотехнологии. - М.