Графики интенсивности фотосинтеза. От чего зависит интенсивность фотосинтеза? Зависимость процесса фотосинтеза от факторов внешней среды Как зависит скорость фотосинтеза от повышения углекислоты

Чтобы ответить на вопрос, как влияют внешние факторы на , необходимо знать, что к числу внешних факторов, относятся: свет, температура, концентрация углекислого газа в воздухе и водоснабжение растения . Влияние внешних факторов на процесс фотосинтеза в растениях.

Свет

Интенсивность света оказывает большое влияние на процесс фотосинтеза. С повышением интенсивности света ускоряется и фотосинтез, но прямой пропорциональной зависимости между интенсивностью света и фотосинтезом не наблюдается. Зависимость фотосинтеза от количества света будет у разных растений неодинакова.
Зависимость фотосинтеза от интенсивности света у светолюбивых и теневыносливых растений. По отношению к интенсивности света растения разделяют на 2 группы: . Первые хорошо растут на открытых местах, при ярком свете, вторые - в тени. Эти растения отличаются и по интенсивности фотосинтеза: у светолюбивых растений фотосинтез возрастает при увеличении освещения, у теневыносливых остается на одном уровне. У теневыносливых растений максимальный фотосинтез протекает при меньшей освещенности по сравнению со светолюбивыми. Светолюбивые и теневыносливые растения различаются как по анатомическому строению, так и по физиологическим признакам. Листья светолюбивых растений имеют более толстую листовую пластинку, хорошо развитый мезофилл, несколько слоев столбчатой паренхимы, более толстый слой кутикулы, больше устьиц и большее количество проводящих пучков, подробнее: (). Клетки у них мелкие, хлоропласты тоже. Кроме того, они содержат меньше хлорофилла, чем теневыносливые растения.

У теневыносливых растений листовая пластинка тонкая, один слой столбчатой паренхимы, сеть жилок слабо развита, устьиц немного. Клетки этих растений крупные, хлоропласты тоже. Данные по количеству хлорофилла у светолюбивых и теневыносливых растений приведены в таблице.

Из данных таблицы видно, что у ели - теневыносливого растения- на свету содержание хлорофилла в 2 раза выше, чем у светолюбивой лиственницы. При недостатке света разница в содержании хлорофилла у ели и лиственницы возрастает в 21 раз. Все особенности в строении листьев у светолюбивых растении имеют приспособительный характер. Так, большое количество устьиц, хорошая проводящая система и повышенная транспирация не позволяют листьям перегреваться на ярком свету и способствуют быстрой подаче к ним воды. Особенности строения листьев у теневыносливых растений вполне обеспечивают их нормальный рост при относительно слабом освещении. Большое количество хлорофилла дает возможность теневыносливым растениям осуществлять процесс фотосинтеза при малой интенсивности света. Если же теневыносливые растения перенести на яркий свет, то они быстро погибают, так как высокое содержание хлорофилла приводит к большому поглощению света, в результате чего резко возрастает транспирация, однако из-за слабо развитой проводящей системы вода в листья поступает медленно. Светолюбивые и теневыносливые растения отличаются и по положению компенсационной точки, т. е. той интенсивности света, при которой образование органического вещества при фотосинтезе равно его трате на дыхание. Теневыносливые растения характеризуются низкой интенсивностью дыхания и повышенной интенсивностью фотосинтеза при слабой освещенности, поэтому точка компенсации у них расположена ниже. Накопление органического вещества у этих растений идет при низкой интенсивности света, при которой у светолюбивых растений вследствие интенсивного дыхания еще не наступила точка компенсации. Светолюбие и тенелюбие растений изменяется в зависимости от места произрастания растений. Изменение светолюбия растений в связи с географической широтой зависит не только от света, но и от температуры и водоснабжения. Листья растения хорошо приспосабливаются к условиям освещения. Так, в кроне дерева всегда есть листья светового типа, расположенные на периферии, и листья теневого типа, находящиеся на ее затененной стороне. Растения можно выращивать при искусственном освещении, используя электрический свет. Однако в этом случае они приобретают признаки этиоляции: электрический свет имеет недостаточное количество сине-фиолетовых лучей, влияющих на формообразовательные процессы.
Искусственное освещение. В последнее время предложены различные лампы, которые дают свет, содержащий необходимое количество синих и фиолетовых лучей. Для нормального роста светолюбивых растений достаточно освещенности в 10- 15 тыс. люксов, которой можно достигнуть и при искусственном освещении.

Температура

Температура оказывает большое влияние на процесс фотосинтеза. При повышении температуры на 10° интенсивность фотосинтеза примерно удваивается. Усиление фотосинтеза, однако, происходит только до температуры 30-35°, дальнейшее повышение ее приводит к уменьшению фотосинтеза, и при 40-45° он прекращается.
Зависимость фотосинтеза от температуры. У многих растений наиболее интенсивный фотосинтез наблюдается при 20-25° (рис. 31). По представлению Ф. Блэкмана, форма кривой изменения интенсивности фотосинтеза с повышением температуры обусловлена тем, что наряду с прогрессивным ускорением химических реакций при повышении температуры возникают процессы, угнетающие фотосинтез (инактивация хлоропластов). К числу внешних факторов, влияющих на интенсивность фотосинтеза, относится и содержание углекислого газа в атмосфере. В среднем в атмосфере содержится 0,03% углекислого газа по объему, и содержание его в атмосфере почти не изменяется: дефицит быстро выравнивается поступлением СО 2 из почвы в результате жизнедеятельности микроорганизмов. При увеличении количества углекислого газа в атмосфере фотосинтез возрастает, но прямой пропорциональности между содержанием углекислого газа и фотосинтезом не наблюдается. Фотосинтез устойчиво увеличивается при повышении содержания углекислого газа до 0,06%, а при значительной интенсивности света и при 1,5-2,0%. В производственных условиях в теплицах и оранжереях в утренние часы, когда фотосинтез идет интенсивно, содержание углекислого газа быстро падает ниже нормы (0,03%) и растения голодают. Поэтому в условиях закрытого грунта уже вошло в практику повышать содержание углекислоты до 1-2%. Однако повышение концентрации углекислого газа неэффективно при слабой интенсивности света, так как углекислый газ не успевает перерабатываться в листьях в органические соединения и действует токсически. При повышении интенсивности света с одновременным увеличением количества углекислого газа возрастает и интенсивность фотосинтеза. Громадное значение для протекания и интенсивности фотосинтеза имеет содержание воды в растении и условия его водоснабжения, поскольку из воды и углекислого газа синтезируются органические вещества и коллоиды цитоплазмы должны быть насыщены водой. При недостатке воды закрываются устьица, в результате замедляется процесс проникновения углекислого газа в лист, а это, в свою очередь, приводит к уменьшению фотосинтеза.
Значение воды для фотосинтеза. При недостаточном водоснабжении подсыхают оболочки клеток мезофилла, граничащие с межклеточниками, что задерживает передвижение углекислого газа к хлоропластам. Вода необходима также и для нормальной работы ферментов, участвующих в процессе фотосинтеза, а в дальнейшем для переработки его продуктов. Временное подвядание растений неблагоприятно влияет на интенсивность фотосинтеза; при этом оно сказывается тем дольше и сильнее, чем длительнее было обезвоживание. При недостатке воды задерживается отток образовавшихся продуктов из листа в стебель и корень растения, что тоже тормозит процесс фотосинтеза, от температуры. Избыточное увлажнение, в результате которого могут закрываться устьица, также отрицательно сказывается на интенсивности фотосинтеза: углекислый газ не может проникнуть внутрь листа.

Агротехнические приемы

Для усиления процесса фотосинтеза, а следовательно, получения высоких урожаев разработаны агротехнические приемы . Большое значение имеют густота стояния растений и направление рядков. При сильно загущенных посевах снижается освещенность отдельных растений, что может привести к уменьшению фотосинтеза. Для светолюбивых растений необходимо применять широкорядные посевы, обеспечивающие хорошую освещенность растений. В этом случае усиление процесса фотосинтеза связано не только с лучшей освещенностью растений, но и с большей площадью их питания.
Ряды посевов. В целях лучшего использования света растениями важное значение имеет и направление рядков. В условиях северо-западной зоны лучше располагать рядки с севера на юг, а на юге - с запада на восток. Для получения высоких урожаев растения нужно обеспечить и углекислым газом. Внесением в почву навоза, торфа и других органических веществ обогащают надземный слой воздуха углекислым газом, который выделяется из почвы при разложении микроорганизмами органических веществ. Почвы, богатые перегноем, ежедневно выделяют до 100-250 кг СО 2 на 1 га. Кроме того, внесение органических удобрений улучшает структуру почвы. В районах с развитой промышленностью углекислый газ, являющийся отходом производства, может быть также использован для обогащения воздуха над посевами. В этом случае его подают на близлежащие поля по трубам. Дополнительное питание растений углекислым газом особенно необходимо при выращивании растений в условиях закрытого грунта - в теплицах и оранжереях, где часто в полуденные часы СО 2 почти отсутствует.
При выращивание в теплицах и оранжереях необходимо дополнительное питание растений углекислым газом. В этом случае обогащение воздуха СО 2 увеличивает урожай в 2-2,5 раза. При выращивании растений в условиях закрытого грунта приходится прибегать к дополнительному освещению, особенно в пасмурные дни и в зимнее время. Свет мощных ламп накаливания может вызвать перегрев растений, поэтому между источником света и растениями ставят водные экраны для поглощения избытка тепловых - инфракрасных - лучей. Поэтому для выращивания растений стали применять люминесцентные лампы - лампы холодного света. При полном отсутствии солнечного света интенсивность освещения должна быть 50-100 тыс. эрг на 1 кв. см в 1 секунду. Для досвечивания достаточно 50 эрг на 1 кв. см в 1 секунду. Выращивание растений на искусственном освещении называется светокультурой. Для нормального роста растений в условиях светокультуры необходимо, кроме света, обеспечить их углекислым газом, минеральным питанием и правильно снабжать водой. Светокультуры имеют большое значение для ранней выгонки зеленных культур, выращивания рассады, томатов, огурцов, редиса, а также для быстрого получения сеянцев древесных пород декоративного садоводства. Используя светокультуры можно снабжать население свежими овощами в течение круглого года.

Факторы, влияющие на эффективность фотосинтеза

Интенсивность, или скорость процесса фотосинтеза в растении, зависит от ряда внутренних и внешних факторов. Из внутренних факторов наибольшее значение имеют структура листа и содержание в нем хлорофилла, накопление продуктов фотосинтеза в хлоропластах, влияние ферментов, а также наличие малых количеств необходимых неорганических веществ. Внешние факторы - это параметры излучения, попадающего на листья, температура окружающей среды, концентрация углекислоты и кислорода в атмосфере вблизи растения. Рассмотрим подробнее некоторые из этих факторов.

Влияние физических и химических факторов на процесс фотосинтеза

При исследовании воздействия СВЧ излучения на пшеницу такими «косвенными» признаками являлись скорость прорастания, всхожесть, интенсивность (скорость) развития ростков , которые являются следствием неизученных в полной мере процессов, протекающих в биосистеме при СВЧ воздействии. Даже в тех случаях, когда удается моделировать изменения на клеточном уровне, корреляционные исследования проводятся после облучения и выращивания растений. Таким образом, в большинстве случаев, ответная реакция биообъекта на воздействие оценивается по «отдаленным» эффектам. Одним из таких «отдаленных» эффектов для зеленых растений может являться и интенсивность фотосинтетических реакций.

Влияние интенсивности света на фотосинтетическую активность показано на рис. 2. При низких интенсивностях света скорость фотосинтеза, измеренная по выделению кислорода, возрастает прямо пропорционально увеличению интенсивности света. Соответствующий участок на графике, обозначенный буквой X, называют начальным участком, или областью, в которой скорость фотосинтеза лимитируется светом. По мере дальнейшего увеличения интенсивности света нарастание фотосинтеза становится все менее и менее выраженным, и, наконец, когда освещенность достигает определенного уровня (около 10 000 лк), дальнейшее увеличение интенсивности света уже не влияет на скорость фотосинтеза. На рисунке это соответствует горизонтальным участкам кривых, или плато. Область плато, обозначенная буквой Y, называется областью светового насыщения. Если нужно увеличить скорость фотосинтеза в этой области, следует изменять не интенсивность света, а какие-либо другие факторы. Интенсивность солнечного света, попадающего в ясный летний день на поверхность земли, во многих местах нашей планеты составляет примерно 105 лк, или около 1000 Вт/м2.

Кроме того важную роль для фотосинтеза играет и температура (второй фактор). В случае низких интенсивностей света скорость фотосинтеза при 15°С и 25°С одинакова. Реакции, протекающие при таких интенсивностях света, которые соответствуют области лимитирования светом, подобно истинным фотохимическим реакциям, не чувствительны к температуре. Однако при более высоких интенсивностях скорость фотосинтеза при 25°С гораздо выше, чем при 15°С. Большинство растений в умеренном климате хорошо функционируют в интервале температур от 10°С до 35°С, наиболее благоприятные условия-- это температура около 25°С.

Третьим фактором, влияющим на скорость фотосинтеза, является изменение частоты светового кванта (цвета волны). Лучистая энергия излучается и распространяется в виде дискретных единиц - квантов, или фотонов. Квант света обладает энергией E = h·н= h·c /л где h - постоянная Планка. Из этой формулы ясно, что значение энергии квантов для разных участков спектра различна: чем короче длина волны, тем она больше.

Энергия квантов, соответствующих крайним участкам видимого диапазона -- фиолетовому (около 400 нм) и дальнему красному различается всего лишь в два раза, и все фотоны в этом диапазоне в принципе способны осуществить запуск фотосинтеза, хотя, как мы увидим далее, пигменты листа избирательно поглощают свет определенных длин волн.

Сравнительная характеристика разных участков спектра приведена в таблице 1.

Таблица 1.

В области лимитирования светом скорость фотосинтеза не изменяется при уменьшении концентрации СО2 в окружающей среде (четвертый фактор). Но при более высоких интенсивностях освещения, лежащих за пределами области лимитирования светом, фотосинтез существенно возрастает при увеличении концентрации СО2. У некоторых зерновых культур фотосинтез линейно возрастал при увеличении концентрации СО2 до 0,5% (эти измерения проводили в кратковременных опытах, поскольку длительное воздействие столь высоких концентраций СО2 повреждает листья). Очень высоких значений скорость фотосинтеза достигает при содержании СО2 около 0,1%. Средняя концентрация углекислоты в атмосфере составляет от 0,03 до 0,04%. Поэтому в обычных условиях растениям не хватает СО2 для того, чтобы с максимальной эффективностью использовать попадающий на них солнечный свет.

Влияние внутренних факторов

Так же на скорость фотосинтеза влияют внутренние факторы, такие как количество хлорофилла в растении, площадь зеленной поверхности растения и пр. В нашей работе мы изучаем влияние внешних факторов.

Эндогенные механизмы регуляции фотосинтеза.

Реализация фотосинтетической функции растения в целом определяется с одной стороны значительной автономностью хлоропластов, а с другой – сложной системой связей фотосинтеза со всеми функциями растения. В ходе онтогенеза в растительном организме всегда присутствуют аттрагирующие зоны (зоны, притягивающие питательные вещества). В аттрагирующих центрах происходит либо новообразование и рост структур, либо интенсивный однонаправленный синтез запасных веществ (клубни, плоды и др.). В обоих случаях состояние аттрагирующих центров определяет величину «запроса» на фотосинтез. Если внешние условия не лимитируют фотосинтез, то ведущая роль принадлежит аттрагирующим центрам. Чем мощнее центры, аттрагирующие ассимиляты, тем интенсивнее фотосинтез.

Второй. важный механизм регуляции фотосинтеза связан с фитогормонами и эндогенными ингибиторами роста и метаболизма. Фитогормоны образуются в разных частях растении, в том числе и хлоропластах, и действуют на процессы фотосинтеза как дистанционно, так и непосредственно на уровне хлоропластов. Дистанционное воздействие осуществляется благодаря регулирующему влиянию фитогормонов на процессы роста и развития, на отложение веществ в запас, на транспорт ассимилятов и т.д., т.е. на формирование и активность аттрагирующих центров. С другой стороны фитогормоны оказывают прямое действие на функциональную активность хлоропластов через изменение состояния мембран, активность ферментов, генерацию трансмембранного потенциала. Доказана также роль фитогормонов, в частности цитокинина, в биогенезе хлоропластов, синтезе хлорофиллов, ферментов ц.Кальвина.

На интенсивность фотосинтеза влияют такие факторы внешней среды, как: интенсивность и качество света, концентрация углекислого газа, температура, водный режим тканей растения, минеральное питание и др.

Интенсивность и спектральный состав света .

Листья высших растений поглощают свет в красной и синей областях спектра – лучи, наиболее эффективные для фотосинтеза.. Отражают листья зеленые лучи. Большая часть (60%) попадающего на лист солнечного излучения не может участвовать в фотохимических процессах, поскольку имеет длину волны, которая не поглощается пигментами листа. Часть света отражается поверхностью листа, рассеивается в виде тепла, тратится на процессы не связанные с фотосинтезом и только 1,5-5% расходуется на фотосинтез (фотосинтетически активная радиация - ФАР).

Зависимость скорости фотосинтеза от интенсивности света имеет форму логарифмической кривой. При низкой освещенности на световой кривой можно выделить точку, когда количество углекислоты, поглощаемой при фотосинтезе и выделяемой при дыхании, равны. Эта точка называется световым компенсационным пунктом (рис.) . Увеличение освещенности выше светового компенсационного пункта вызывает постепенное возрастание интенсивности фотосинтеза. При дальнейшем увеличении интенсивности кривая выходит на плато, сто свидетельствует о насыщении процесса связывания углекислоты. В этих условиях процесс фотосинтеза уже лимитируется только содержанием углекислого газа. У светолюбивых видов насыщение происходит при более высокой освещенности (10-40 тыс. люкс), чем у теневыносливых (1000 люкс).


Активность фотосинтеза в области насыщающей интенсивности света лимитилуется концентрацией СО2 и зависит от мощности системы поглощения и восстановления углекислоты. Чем выше способность растения к восстановлению СО 2 , тем выше проходит световая кривая фотосинтеза

Рис. Изменение интенсивности фотосинтеза у лебеды Atriplex triangularis, выращенной при различной освещенности.

Поэтому у С 3 -растений насыщение происходит при более низкой освещенности, чем у С 4 -растений, которые более эффективно связывают углекислоту.

СО 2 – основной субстрат фотосинтеза. Зависимость фотосинтеза от концентрации углекислоты описывается логарифмической кривой (рис). При концентрации 0,036% интенсивность фотосинтеза составляет лишь 50% и достигает максимума при 0,3%.

Рис. Зависимость интенсивности фотосинтеза от парциального давления СО 2

Многие биологические процессы, в которых участвуют газы (углекислый газ, кислород), определяются не концентрацией, а парциальным давлением. Например, если атмосферное давление 0,1МПа, то парциальное давление углекислого газа составит 36Па (оно вычисляется умножением молярного содержания газа на общее атмосферное давление 0,036х0,1МПа).

У С 3 -растений при низких концентрациях углекислоты количество СО 2 фиксированное при фотосинтезе, меньше чем количество СО 2 выделенное при дыхании. При повышении СО 2 можно зафиксировать точку, в которой суммарное поглощение углекислоты в фотосинтезе равно 0. Эта концентрация СО 2 называется углекислотным компенсационным пунктом . Это параметр характеризует соотношение между процессами фотосинтеза и дыхания в зависимости от содержания СО 2 в атмосфере.

Процесс фотосинтеза обычно осуществляется в аэробных условиях. При концентрации кислорода 21%. Увеличение содержания или отсутствие кислорода для фотосинтеза неблагоприятны.

Высокие концентрации кислорода снижают интенсивность фотосинтеза по следующим причинам: 1) повышение парциального давления активирует процесс фотодыхания (РБФ-карбоксилаза ц.Кальвина работает как оксигеназа); 20 кислород окисляет первичные восстановленные продукты фотосинтеза.

Температура

Зависимость интенсивности фотосинтеза от температуры имеет вид параболы с максимумом от 25 о -35 о С. Однако если концентрация углекислого газа в воздухе будет выше, то температурный оптимум сместится до 35-38 о С. Это объясняется тем, что именно при таких температурах активно идут ферментативные реакции (темновая фаза фотосинтеза) (рис.).

Рис. Зависимость интенсивности фотосинтеза от температуры: 1 – при высоком содержании углекислоты; 2 – при 0,036%

Водный режим

Вода непосредственно участвует в фотосинтезе как субстрат окисления и источник кислорода. С другой стороны, величина оводненности тканей определяет степень открывания устьиц и, следовательно, поступления СО 2 в лист. При полном насыщении листа водой устьица закрываются, что снижает интенсивность фотосинтеза. Поэтому незначительный водный дефицит благоприятен для фотосинтеза. В условиях засухи происходит закрывание устьиц под влиянием абсцизовой кислоты, которая накапливается в листьях. Длительный водный дефицит приводит к ингибированию нециклического и циклического транспорта электронов и фотофосфорилирования.

Минеральное питание

Для нормального функционирования фотосинтетического аппарата растение должно быть обеспечено всем комплексом макро- и микроэлементов. Зависимость фотосинтеза от элементов минерального питания определяется их необходимостью для формирования фотосинтетического аппарата (пигментов, компонентов ЭТЦ, структурных и транспортных белков).

Магний входит в состав хлорофиллов, участвует в деятельности сопрягающих белков при синтезе АТР, влияет на активность реакций карбоксилирования и восстановления NADP+.

Железо необходимо для функционирования цитохромов, ферредоксина (компоненты ЭТЦ). Недостаток железа нарушает функционирование циклического и нециклического фотофосфорилирования, синтез пигментов, нарушает структуру хлоропластов.

Марганец и хлор необходимы для фотолиза воды.

Медь входит в состав пластоцианина.

Азот входит в состав хлорофиллов, аминокислот. Недостаток его сказывается активности фотосинтеза в целом.

Фосфор необходим для фотохимических и темновых реакций фотосинтеза. Отрицательно сказываются как недостаток, так и избыток его (нарушается проницаемость мембран)

Калий необходим для формирования гранистой структуры хлоропластов, работы устьиц, поглощения клетками воды. При недостатке калия нарушаются все процессы фотосинтеза.

Интенсивность фотосинтеза

В физиологии растений пользуются двумя понятиями: истинный и наблюдаемый фотосинтез. Это обусловлено следующими соображениями. Скорость или интенсивность фотосинтеза характеризуется количеством СО 2 , поглощенного единицей поверхности листа в единицу времени. Определение интенсивности фотосинтеза проводят газометрическим методом по изменению (уменьшению) количества СО 2 в замкнутой камере с листом. Однако, вместе с фотосинтезом идет процесс дыхания, во время которого выделяется СО 2 . Поэтому получаемые результаты дают представление об интенсивности наблюдаемого фотосинтеза. Для получения величины истинного фотосинтеза необходимо сделать поправку на дыхание. Поэтому перед опытом определяют в темноте интенсивность дыхания, а потом уже интенсивность наблюдаемого фотосинтеза. Затем количество СО 2 , выделенного при дыхании, прибавляют к количеству СО 2 , поглощенного на свету. Внося эту поправку, считают, что интенсивность дыхания на свету и в темноте одинакова. Но эти поправки не могут дать оценку истинного фотосинтеза потому, что, во-первых, при затемнении листа исключается не только истинный фотосинтез, но и фотодыхание; во-вторых, так называемое темновое дыхание в действительности зависит от света (см. дальше).

Поэтому во всех экспериментальных работах по фотосинтетическому газообмену листа отдают преимущество данным по наблюдаемому фотосинтезу. Более точный метод изучения интенсивности фотосинтеза – метод меченных атомов (измеряют количество поглощенного 14 СО 2).

В том случае, когда пересчет количества поглощенного СО 2 на единицу поверхности трудно провести (хвойные, семена, плоды, стебель), полученные данные относят к единице массы. Учитывая, что фотосинтетический коэффициент (отношение объема выделенного кислорода к объему поглощенного СО 2 равен единице, скорость наблюдаемого фотосинтеза можно оценивать по количеству миллилитров кислорода, выделенной единицей площади листа за 1 час.

Для характеристики фотосинтеза пользуются и другими показателями: квантовый расход, квантовый выход фотосинтеза, ассимиляционное число.

Квантовый расход – это отношение количества поглощенных квантов к количеству ассимилированных молекул СО 2 . Обратная величина названа квантовым выходом .

Ассимиляционное число – это соотношение между количеством СО 2 и количеством хлорофилла, который содержится в листе.

Скорость (интенсивность) фотосинтеза – один из важнейших факторов, влияющих на продуктивность с/х культур, а значит и на урожай. Поэтому выяснение факторов, от которых зависит фотосинтез, должно вести к усовершенствованию агротехнических мероприятий.

Теоретически скорость фотосинтеза, как и скорость любого многостадийного биохимического процесса, должна лимитироваться скоростью самой медленной реакции. Так, например, для темновых реакций фотосинтеза нужны НАДФН и АТФ, поэтому темновые реакции зависят от световых реакций. При слабой освещенности скорость образования этих веществ слишком мала, чтобы обеспечить максимальную скорость темновых реакций, поэтому свет будет лимитирующим фактором.

Принцип лимитирующих факторов можно сформулировать следующим образом: при одновременном влиянии нескольких факторов скорость химического процесса лимитируется тем фактором, который ближе всех к минимальному уровню (изменение именно этого фактора будет непосредственно влиять на данный процесс).

Этот принцип впервые был установлен Ф. Блекманом в 1915 г. С тех пор было неоднократно показано, что разные факторы, например концентрация СО 2 и освещенность, могут взаимодействовать между собой и лимитировать процесс, хотя часто один из них все же главенствует. Освещенность, концентрация СО 2 и температура – вот те главные внешние факторы, влияющие на скорость фотосинтеза. Однако большое значение имеет также водный режим, минеральное питание и др.

Свет. При оценке действия света на тот или иной процесс важно различать влияние его интенсивности, качества (спектрального состава) и времени экспозиции на свету.

При низкой освещенности скорость фотосинтеза пропорциональна интенсивности света. Постепенно лимитирующими становятся другие факторы, и увеличение скорости замедляется. В ясный летний день освещенность составляет примерно 100 000 лк, а для светового насыщения фотосинтеза хватает 10 000 лк. Поэтому свет обычно может быть важным лимитирующим фактором в условиях затенения. При очень большой интенсивности света иногда начинается обесцвечивание хлорофилла, и это замедляет фотосинтез; однако в природе, растения находящиеся в таких условиях, обычно тем или иным образом защищены от этого (толстая кутикула, опущенные листья и т. п.).

Зависимость интенсивности фотосинтеза от освещенности описывается кривой, которая получила название световой кривой фотосинтеза (рис. 2.26).

Рис. 2.26. Зависимость интенсивности фотосинтеза от освещенности (световая кривая фотосинтеза): 1 – скорость выделения СО 2 в темноте (скорость дыхания); 2 – компенсационная точка фотосинтеза; 3 – положение светового насыщения

При слабом освещении в процессе дыхания выделяется больше СО 2 , чем связывается его в процессе фотосинтеза, поэтому начало световой кривой с осью абсцисс – компенсационная точка фотосинтеза, которая показывает, что в этом случае при фотосинтезе используется ровно столько СО 2 , сколько его выделяется при дыхании. Иными словами, со временем наступает такой момент, когда фотосинтез и дыхание будут точно уравновешивать друг друга, так что видимый обмен кислорода и СО 2 прекратиться. Световая точка компенсации – это такая интенсивность света, при которой суммарный газообмен равен нулю.

Световые кривые одинаковы не для всех растений. У растений, которые растут на открытых солнечных местах, поглощение СО 2 увеличивается до тех пор, пока интенсивность света не будет равна полному солнечному освещению. У растений, которые растут на затененных местах (например, кислица), поглощение СО 2 увеличивается только при малой интенсивности света.

Все растения по отношению к интенсивности света делят на световые и теневые, или светолюбивые и теневыносливые. Большинство с/х растений является светолюбивыми.

У теневыносливых растений, во-первых, световое насыщение происходит при более слабом освещении, во-вторых, в них компенсационная точка фотосинтеза наступает раньше, т. е. при меньшей освещенности (рис. 2.27).


Последнее связано с тем, что теневыносливые растения отличаются малой интенсивностью дыхания. В условиях слабой освещенности интенсивность фотосинтеза выше у теневыносливых растений, а при сильном свете, наоборот, – у светолюбивых.

Интенсивность света влияет и на химический состав конечных продуктов фотосинтеза. Чем выше освещенность, тем больше образуется углеводов; при низкой освещенности – больше органических кислот.

Опыты в лабораторных условиях показали, что на качество продуктов фотосинтеза влияет и резкий переход «темнота – свет» и наоборот. Сначала после включения света высокой интенсивности преимущественно образуются неуглеводные продукты из-за недостатка НАДФН и АТФ, и только через некоторое время начинают образовываться углеводы. И наоборот, после выключения света листья не сразу теряют способность к фотосинтезу, потому что на протяжении нескольких минут в клетках остается запас АТФ и НАДФ.

После выключения света сначала тормозится синтез углеводов и только потом органических веществ и аминокислот. Основная причина этого явления обусловлена тем, что торможение превращения ФГК в ФГА (и через него в углеводы) происходит раньше, чем торможение ФГК в ФЕП (и через него в аланин, малат и аспарат).

На соотношение образующих продуктов фотосинтеза влияет и спектральный состав света. Под влиянием синего света в растениях увеличивается синтез малата, аспартата и других аминокислот и белков. Эта реакция на синий свет выявлена и в С 3 -растениях и в С 4 -растениях.


Спектральный состав света влияет и на интенсивность фотосинтеза (рис. 2.28). Рис. 2.28. Спектр действия фотосинтеза листьев пшеницы

Спектр действия – это зависимость эффективности химического (биологического) действия света от длины его волны. Интенсивность фотосинтеза в разных участках спектра неодинакова. Максимальная интенсивность наблюдается при освещении растений теми лучами, которые максимально поглощаются хлорофиллами и другими пигментами. Интенсивность фотосинтеза наиболее высокая в красных лучах, потому что она пропорциональна не количеству энергии, а количеству квантов.

Из суммарного уравнения фотосинтеза:

6СО 2 + 6Н 2 О → С 6 Н 12 О 6 + 6О 2

следует, что для образования 1 моля глюкозы нужно 686 ккал; это значит, что для ассимиляции 1 моля СО 2 нужно 686: 6 = 114 ккал. Запас энергии 1 кванта красного света (700 нм) равен 41 ккал/энштейн, а синего (400 нм) 65 ккал/энштейн. Минимальный квантовый расход при освещении красным светом равен 114: 41 ≈ 3, а в действительности тратиться 8–10 квантов. Таким образом, эффективность использования красного света 114/41 · 8 = 34 %, а синего 114/65 ·8 = 22 %.

Концентрация СО 2 . Для темновых реакций нужна двуокись углерода, которая включается в органические соединения. В обычных полевых условиях именно СО 2 является главным лимитирующим фактором. Концентрация СО 2 в атмосфере составляет 0,045 %, но если повышать ее, то можно увеличить и скорость фотосинтеза. При кратковременном действии оптимальная концентрация СО 2 составляет 0,5 %, однако при длительном воздействии возможно повреждение растений, поэтому оптимум концентрации в этом случае ниже – около 0,1 %. Уже сейчас некоторые тепличные культуры, например томаты, стали выращивать в атмосфере, обогащенной СО 2 .

В настоящее время большой интерес вызывает группа растений, которые намного эффективнее поглощают СО 2 из атмосферы и поэтому дают более высокий урожай – так называемые С 4 -растения.

В искусственных условиях зависимость фотосинтеза от концентрации СО 2 описывается в углекислотной кривой, которая напоминает световую кривую фотосинтеза (рис.2.29).

При концентрации СО 2 0,01 % скорость фотосинтеза равна скорости дыхания (компенсационная точка). Углекислотное насыщение наступает при 0,2–0,3 % СО 2 , а у некоторых растениях даже при этих концентрациях наблюдается небольшое увеличение фотосинтеза.

Рис. 2.29. Зависимость интенсивности фотосинтеза хвои сосны от концентрации СО 2 в воздухе

В природных условиях зависимость фотосинтеза от концентрации СО 2 описывается только линейной частью кривой. Отсюда следует, что обеспеченность растений СО 2 в природных условиях является фактором, который лимитирует урожай. Поэтому целесообразно выращивать растения в закрытых помещениях с повышенным содержанием СО 2 .

Температура оказывает заметное влияние на процесс фотосинтеза, поскольку темновые, а отчасти и световые реакции фотосинтеза контролируются ферментами. Оптимальная температура для растений умеренного климата обычно составляет около 25 о С.

Поглощение и восстановление СО 2 у всех растений с повышением температуры увеличиваются, пока не будет достигнут некоторый оптимальный уровень. У большинства растений умеренной зоны снижение интенсивности фотосинтеза начинается уже после 30 о С, у некоторых южных видов после 40 о С. При большой жаре (50–60 о С), когда начинается инактивация ферментов, а также нарушается согласованность разных реакций, фотосинтез быстро прекращается. По мере повышения температуры интенсивность дыхания повышается значительно быстрей, чем интенсивность естественного фотосинтеза. Это влияет на величину наблюдаемого фотосинтеза. Зависимость интенсивности наблюдаемого фотосинтеза от температуры описывается температурной кривой, в которой выделяют три основные точки: минимум, оптимум и максимум.

Минимум – та температура при которой фотосинтез начинается, оптимум – температура, при которой фотосинтез наиболее устойчивый и достигает наибольшей скорости, максимум – та температура, после достижения которой фотосинтез прекращается (рис. 2.30).

Рис. 2.30. Зависимость интенсивности фотосинтеза от температуры листа: 1 – хлопчатник; 2 – подсолнечник; 3 – сорго

Влияние кислорода . Более полувека назад было отмечено на первый взгляд парадоксальное явление. Кислород воздуха, который является продуктом фотосинтеза, является одновременно и его ингибитором: выделение кислорода и поглощение СО 2 падают по мере увеличения концентрации О 2 в воздухе. Этот феномен назвали именем его открывателя – эффект Варбурга. Этот эффект присущ всем С 3 -растениям. И только в листьях С 4 -растений его не удалось выявить. Сейчас твердо установлено, что природа эффекта Варбурга связана с оксигеназными свойствами основного фермента цикла Кальвина – РДФ-карбоксилазы. При большой концентрации кислорода начинается фотодыхание. Установлено, что при снижении концентрации О 2 до 2–3 % фосфогликолат не образуется, исчезает и эффект Варбурга. Таким образом, оба эти явления – проявление оксигеназных свойств РДФ-карбоксилазы и образование гликолата, а также уменьшение фотосинтеза в присутствии О 2 тесно связаны один с другим.

Очень низкое содержание О 2 или полное отсутствие, как и увеличение концентрации до 25–30 %, тормозит фотосинтез. Для большинства растений некоторое снижение природной концентрации (21 %) О 2 активирует фотосинтез.

Влияние оводненности тканей . Как уже отмечалось, вода участвует в световой стадии фотосинтеза как донор водорода для восстановления СО 2 . Однако, роль лимитирующего фотосинтез фактора играет не минимальное количество воды (приблизительно 1 % поступившей), а та вода, которая входит в состав клеточных мембран и является средой для всех биохимических реакций, активирует ферменты темновой фазы. Кроме того, от количества воды в замыкающих клетках зависит степень открытия устьиц, а тургорное состояние всего растения определяет расположение листьев по отношению к солнечным лучам. Количество воды косвенно влияет на изменение скорости отложения крахмала в строме хлоропласта и даже на изменение структуры и расположение тилакоидов в строме.

Зависимость интенсивности фотосинтеза от оводненности тканей растений, как и зависимость от температуры, описывается переходной кривой, имеющей три основные точки: минимум, оптимум и максимум.

При обезвоживании меняется не только интенсивность фотосинтеза, но и качественный состав продуктов фотосинтеза: меньше синтезируется малата, сахарозы, органических кислот; больше – глюкозы, фруктозы аланина и других аминокислот.

К тому же установлено, что при нехватке воды в листьях накапливается АБК – ингибитор роста.

Концентрация хлорофилла , как правило, не бывает лимитирующим фактором, однако количество хлорофилла может уменьшаться при различных заболеваниях (мучнистая роса, ржавчина, вирусные болезни), недостатке минеральных веществ и с возрастом (при нормальном старении). Когда листья желтеют, говорят, что они становятся хлоротичными, а само явление называют хлорозом. Хлоротические пятна на листьях часто бывают симптомом заболевания или недостатка минеральных веществ.

Хлороз может быть вызван и недостатком света, так как свет нужен для конечной стадии биосинтеза хлорофилла.

Минеральные элементы. Для синтеза хлорофилла нужны и минеральные элементы: железо, магний и азот (два последних элемента входят в его структуру), потому они особенно важны для фотосинтеза. Важен также калий.

Для обычного функционирования фотосинтетического аппарата растение должно быть обеспечено необходимым количеством (оптимальным) минеральных элементов. Магний, кроме того, что входит в состав хлорофилла, участвует в действии сопрягающих белков при синтезе АТФ, влияет на активность реакций карбоксилирования и восстановление НАДФ + .

Железо в восстановленной форме необходимо для процессов биосинтеза хлорофилла и железосодержащих соединений хлоропластов (цитохромов, ферредоксина). Нехватка железа нарушает циклическое и нециклическое фотофосфорилирование, синтез пигментов, изменение структуры хлоропластов.

Марганец и хлор принимают участие в фотоокислении воды.

Медь входит в состав пластоцианина.

Недостаток азота оказывает влияние не только на формирование пигментных систем и структур хлоропластов, но и на количество и активность РДФ-карбоксилазы.

При недостатке фосфора нарушаются фотохимические и темновые реакции фотосинтеза.

Калий играет полифункциональную роль в ионной регуляции фотосинтеза, при его недостатке в хлоропластах разрушается структура гран, устьица слабо открываются на свету и недостаточно закрываются в темноте, ухудшается водный режим листа, т. е. нарушаются все процессы фотосинтеза.

Возраст растений. Только после создания фитотронов, где можно выращивать растения в контролируемых условиях, удалось получить надежные результаты. Выявлено, что во всех растениях только в самом начале жизненного цикла, когда формируется фотосинтетический аппарат, интенсивность фотосинтеза увеличивается, очень быстро достигает максимума, затем немного уменьшается и дальше меняется очень мало. Например, у злаков фотосинтез достигает максимальной интенсивности в фазу кущения. Это объясняется тем, что максимальная фотосинтетическая активность листа совпадает с окончанием периода его формирования. Затем начинается старение и уменьшение фотосинтеза.

Интенсивность фотосинтеза зависит в первую очередь от структуры хлоропластов. При старении хлоропластов разрушаются тилакоиды. Доказывают это с помощью реакции Хила. Она идет тем хуже, чем больший возраст хлоропластов. Таким образом, показано, что интенсивность определяется не количеством хлорофилла, а структурой хлоропласта.

В оптимальных условиях влажности и азотного питания снижение фотосинтеза с возрастом происходит медленнее, так как в этих условиях хлоропласты медленнее стареют.

Генетические факторы. Процессы фотосинтеза в определенной степени зависят от наследственности растительного организма. Интенсивность фотосинтеза различна у растений разных систематических групп и жизненных форм. У трав интенсивность фотосинтеза выше, чем у древесных растений (табл. 2.5).

Скорость фотосинтеза зависит от факторов, среди которых выделяют свет,

концентрацию углекислого газа, воду, температуру. Почему эти факторы

являются лимитирующими для реакций фотосинтеза?

(допускаются иные формулировки ответа, не искажающие его смысла)

Элементы ответа:

свет – источник энергии для световых реакций фотосинтеза, при

его недостатке интенсивность фотосинтеза снижается;

углекислый газ и вода необходимы для синтеза глюкозы, при их

недостатке снижается интенсивность фотосинтеза;

3) все реакции фотосинтеза осуществляются при участии

ферментов, активность которых зависит от температуры

биологических ошибок

Ответ неправильный

Максимальный балл

C5 Для соматической клетки животного характерен диплоидный набор хромосом. Определите хромосомный набор (n) и число молекул ДНК (с) в клетке в конце телофазы мейоза I и анафазе мейоза II. Объясните результаты в каждом случае.

1) в конце телофазы мейоза I набор хромосом – n; число ДНК – 2с;

2) в анафазе мейоза II набор хромосом – 2n; число ДНК – 2с;

3) в конце телофазы I

произошло редукционное деление, число

хромосом и ДНК уменьшилось в 2 раза, хромосомы

двухроматидные;

4) в анафазе мейоза

II к полюсам расходятся сестринские

хроматиды (хромосомы), поэтому число хромосом равно числу

Ответ включает все названные выше элементы, не содержит

биологических ошибок

Ответ включает 2–3 из названных выше элементов и не содержит

биологических ошибок, ИЛИ ответ включает 4 названных выше

элемента, но содержит негрубые биологические ошибки

Ответ включает 1 из названных выше элементов и не содержит

биологических ошибок, ИЛИ ответ включает 2–3 из названных

выше элементов, но содержит негрубые биологические ошибки

Ответ неправильный

Максимальный балл

© 2014 Федеральная служба по надзору в сфере образования и науки Российской Федерации

C6 У человека ген нормального слуха (В) доминирует над геном глухоты и находится в аутосоме; ген цветовой слепоты (дальтонизма – d) рецессивный и сцеплен с Х-хромосомой. В семье, где мать страдала глухотой, но имела нормальное цветовое зрение, а отец – с нормальным слухом (гомозиготен), дальтоник, родилась девочка с нормальным слухом, но дальтоник. Составьте схему решения задачи. Определите генотипы родителей, дочери, возможные генотипы детей и их соотношение. Какие закономерности наследственности проявляются в данном случае?

(правильный ответ должен содержать следующие позиции)

Схема решения задачи включает:

1) генотипы родителей:

♀ bbXD Xd

♂ ВВXd Y

bXD , bXd

ВXd , ВY

2) возможные генотипы детей:

ВbXD Xd – девочка с нормальным слухом и зрением 25%;

ВbXd Xd – девочка с нормальным слухом, дальтоник 25%;

ВbXD Y – мальчик с нормальным слухом и зрением 25%;

ВbXd Y – мальчик с нормальным слухом и зрением 25%.

3) проявляется закон независимого

наследования признаков и

сцепленного с полом наследования признака

Ответ включает все названные выше элементы, не содержит

биологических ошибок

Ответ включает 2 из названных выше элементов и не содержит

биологических ошибок, ИЛИ ответ включает 3 названных выше

элемента, но содержит негрубые биологические ошибки

Ответ включает 1 из названных выше элементов и не содержит

биологических ошибок, ИЛИ ответ включает 2 из названных выше

элементов, но содержит негрубые биологические ошибки

Ответ неправильный

Максимальный балл

© 2014 Федеральная служба по надзору в сфере образования и науки Российской Федерации