Закон сохранения количества движения импульса тела. Закон сохранения количества движения и уравнение движения. Уравнения для скорости (сохранения количества движения) выведем сначала для идеальной жидкости (без вязкости). Примеры решения задач

Рис.45

Чтобы уяснить механический смысл величины и иметь необхо­димые формулы для решения задач, вычислим кинетический момент тела, вращающегося вокруг неподвижнойоси (рис.45).Приэтом, как обычно, определение вектора сводится к определению его проекций .

Найдем сначала наиболее важ­ную для приложений формулу, оп­ределяющую величину К z , т.е. кине­тический момент вращающегося тела относительно оси вращения.

Для любой точки тела, отстоя­щей от оси вращения на расстоя­нии , скорость . Сле­довательно, для этой точки . Тогда для всего тела, вынося общий множитель за скобку, получим

Величина, стоящая в скобке, представляет собою момент инерции тела относительно оси z . Окончательно находим

Таким образом, кинетический момент вращающегося тела относительно оси вращения равен произведению момента инерции тела относительно этой оси на угловую скорость тела.

Если система состоит из нескольких тел, вращающихся вокруг одной и той же оси, то, очевидно, будет

Легко видеть аналогию между формулами и : количество движения равно произведению массы (величина, характеризующая инертность тела при поступательном движении) на скорость; кинети­ческий момент равен произведению момента инерции (величина, характеризующая инертность тела при вращательном движении) на угловую скорость.

Теорема об изменении главного момента количеств движения системы (теорема моментов).

Теорема моментов для одной материальной точки будет справедлива для каждой из точек системы. Следовательно, если рассмотреть точку системы с массой , имеющую скорость , то для нее будет

где и - равнодействующие всех внешних и внутренних сил, действующих на данную точку.

Составляя такие уравнения для всех точек системы и складывая их почленно, получим:

Но последняя сумма по свойству внутренних сил системы равна нулю. Тогда найдем окончательно:

Полученное уравнение выражает следующую теорему моментов для системы: производнаяпо времени от главногомомента количеств движения системы относительно некоторого неподвижного центра, равна сумме моментов всех внешних сил системы относительно того же центра.

Проектируя обе части равенства на неподвижные оси Охуz , получим:

Уравнения выражают теорему моментов относительно любой неподвижной оси.

В кинематике было показано, что движение твердого тела в общем случае сла­гается из поступательного движения вместе с некоторым полюсом и вращательного движения вокруг этого полюса. Если за полюс выбрать центр масс, то поступательная часть движения тела может быть изу­чена с помощью теоремы о движении центра масс, а вращатель­ная - с помощью теоремы моментов.


Практическая ценность теоремы моментов состоит еще в том, что она, аналогично теореме об изменении количества движения, по­зволяет при изучении вра­щательного движения системы исключать из рас­смотрения все наперед неиз­вестные внутренние силы.

Из теоремы моментов можно получить следующие важные следствия.

1) Пусть сумма моментов относительно центра О всех внешних сил, действующих на систему, равна нулю:

Тогда из уравнения следует, что при этом . Таким образом, если сумма моментов относительно данного центра всех приложенных к системе внешних сил равна нулю, то главный, момент количеств движения системы относительно этого центра будет численно и по направлению постоянен.

2) Пусть внешние силы, действующие на систему, таковы, что сумма их моментов относительно некоторой неподвижной оси Оz равна нулю:

Тогда из уравнения следует, что при этом К z = const. Таким образом, если сумма моментов всех действующих на си­стему внешних сил относительно какой-нибудь оси равна нулю, то главный момент количеств движения системы относительно этой оси будет величиной постоянной.

Эти результаты выражают собою закон сохранения главного момента количеств движения системы. Из них следует, что внутренние силы изменить главный момент количеств движения системы не могут.

Случай вращающейся системы.

Рассмотрим систему, вращающуюся вокруг неподвижной (или проходящей через центр масс) оси Оz. Тогда . Если в этом случае , то

Отсюда приходим к следующим выводам.

а) Если система неизменяема (абсолютно твердое тело), то и, следовательно, , т. е. твердое тело, закреплен­ное на оси, вращается в этом случае с постоянной угловой скоростью.

б) Если система изменяема, то под действием внутренних (или внешних) сил отдельные ее точки могут удаляться от оси, что вызы­вает увеличение , или приближаться к оси, что приведет к умень­шению . Но поскольку , то при увеличении момента инерции угловая скорость системы будет уменьшаться, а при умень­шении момента инерции - увеличиваться. Таким образом, действием внутренних сил можно изменить угловую скорость вращения системы, так как постоянство К z не означает вообще постоянства .

Рассмотрим некоторые примеры:

а) Опыты с платформой Жуковского. Для демонстра­ции закона сохранения момента количеств движения удобно пользо­ваться простым прибором, называемым «платформой Жуковского». Это круглая горизонтальная платформа на шариковых опорных под­шипниках, которая может с малым трением вращаться вокруг верти­кальной оси z. Для человека, стоящего на такой платформе,

и, следовательно, . Если человек, разведя руки в стороны, сообщит себе толчком вращение вокруг вертикальной оси, а затем опустит руки, то величина уменьшится и, следовательно, угловая скорость вра­щения возрастет. Таким способом увеличения угловой скорости враще­ния широко пользуются в балете, при прыжках в воздухе (сальто) и т. п.

Далее, человек, стоящий на платформе неподвижно (К z =0 ), мо­жет повернуться в любую сторону, вращая вытянутую горизонтально руку в противоположном направлении. Угловая скорость вращения человека при этом будет такой, чтобы в сумме величина К z системы осталась равной нулю.

б) Раскачивание качелей . Давлением ног (сила внутрен­няя) человек, стоящий на качелях, раскачать их не может. Сделать это можно следующим образом. Когда качели находятся в левом верх­нем положении A 0 , человек приседает. При прохождении через вер­тикаль он быстро выпрямляется. Тогда массы приближаются к оси вращения z, величина уменьшается, и угловая скорость скачком возрастает. Это увеличение приводит в конечном счете к тому, что качели поднимутся выше начального уровня A 0 . В правом верхнем положении, когда , человек опять приседает (на величине это, очевидно, не скажется); при прохождении через вертикаль он снова выпрямляется и т.д. В результате размахи качелей будут возрастать.

в) Реактивный момент винта. Воздушный винт, устано­вленный на вертолете, не только отбрасывает воздух вниз, но и сообщает отбрасываемой массе вращение. Суммарный момент количеств движения отбрасываемой массы воздуха и верто­лета должен при этом остаться равным нулю, так как система вначале была неподвижна, а силы взаимодействия между винтом и средой внутренние. Поэтому вертолет начинает вращаться в сторону, противоположную направлению вращения винта. Действующий при этом на вертолет вращающий момент называют реактивным моментом.

Чтобы предотвратить реактивное вращение корпуса одновинтового вертолета, на его хвостовой части устанавливают соответствующий рулевой винт. У многовинтового вертолета винты делают вращающи­мися в разные стороны.

Просмотр: эта статья прочитана 23265 раз

Pdf Выберите язык... Русский Украинский Английский

Краткий обзор

Полностью материал скачивается выше, предварительно выбрав язык


Механической системой материальных точек или тел называется такая их совокупность, в которой положение и движение каждой точки (или тела) зависит от положения и движения остальных.
Материальное тело рассматривается, как система материальных точек (частиц), которые образуют это тело.
Внешними силами называют такие силы, которые действуют на точки или тела механической системы со стороны точек или тел, которые не принадлежат данной системе.
Внутренними силами , называют такие силы, которые действуют на точки или тела механической системы со стороны точек или тел той же системы, т.е. с которыми точки или тела данной системы взаимодействуют между собой.
Внешние и внутренние силы системы, в свою очередь могут быть активными и реактивными
Масса системы равняется алгебраической сумме масс всех точек или тел системыВ однородном поле тяжести, для которого, вес любой частицы тела пропорционален ее массе. Поэтому распределение масс в теле можно определить по положению его центра тяжести - геометрической точки С , координаты которой называют центром масс или центром инерции механической системы
Теорема о движении центра масс механической системы : центр масс механической системы движется как материальная точка, масса которой равняется массе системы, и к которой приложены все внешние силы, действующие на систему
Выводы:

  1. Механическую систему или твердое тело можно рассматривать как материальную точку в зависимости от характера ее движения, а не от ее размеров.
  2. Внутренние силы не учитываются теоремой о движении центра масс.
  3. Теорема о движении центра масс не характеризует вращательное движение механической системы, а только поступательное

Закон о сохранении движения центра масс системы:
1. Если сумма внешних сил (главный вектор) постоянно равен нулю, то центр масс механической системы находится в покое или движется равномерно и прямолинейно.
2. Если сумма проекций всех внешних сил на какую-нибудь ось равняется нулю, то проекция скорости центра масс системы на эту же ось величина постоянная.

Теорема об изменении количества движения.

Количество движения материальной точк и - векторная величина, которая равняется произведению массы точки на вектор ее скорости.
Единицей измерения количества движения есть (кг м/с).
Количество движения механической системы - векторная величина, равняющаяся геометрической сумме (главному вектору) количества движения всех точек системы.или количество движения системы равняется произведению массы всей системы на скорость ее центра масс
Когда тело (или система) движется так, что ее центр масс неподвижен, то количество движения тела равняется нулю (пример, вращение тела вокруг неподвижной оси, которая проходит через центр масс тела).
Если движение тела сложное, то не будет характеризовать вращательную часть движения при вращении вокруг центра масс. Т.е., количество движения характеризует только поступательное движение системы (вместе с центром масс).
Импульс силы характеризует действие силы за некоторый промежуток времени.
Импульс силы за конечный промежуток времени определяется как интегральная сумма соответствующих элементарных импульсов
Теорема об изменении количества движения материальной точки :
(в дифференциальной форме): Производная за временем от количества движения материальной точки равняется геометрической сумме действующих на точки сил
(в интегральной форме): Изменение количества движения за некоторый промежуток времени равняется геометрической сумме импульсов сил, приложенных к точке за тот же промежуток времени.

Теорема об изменении количества движения механической системы
(в дифференциальной форме): Производная по времени от количества движения системы равняется геометрической сумме всех действующих на систему внешних сил.
(в интегральной форме): Изменение количества движения системы за некоторый промежуток времени равняется геометрической сумме импульсов, действующих на систему внешних сил, за тот же промежуток времени.
Теорема позволяет исключить из рассмотрения заведомо неизвестные внутренние силы.
Теорема об изменении количества движения механической системы и теорема о движении центра масс являются двумя разными формами одной теоремы.
Закон сохранения количества движения системы.

  1. Если сумма всех внешних сил, действующих на систему, равняется нулю, то вектор количества движения системы будет постоянным по направлению и по модулю.
  2. Если сумма проекций всех действующих внешних сил на любую произвольную ось равняется нулю, то проекция количества движения на эту ось является величиной постоянной.

Законы сохранения свидетельствуют, что внутренние силы не могут изменить суммарное количество движения системы.

  1. Классификация сил, действующих на механическую систему
  2. Свойства внутренних сил
  3. Масса системы. Центр масс
  4. Дифференциальные уравнения движения механической системы
  5. Теорема о движении центра масс механической системы
  6. Закон о сохранении движения центра масс системы
  7. Теорема об изменении количества движения
  8. Закон сохранения количества движения системы

Язык: русский, украинский

Размер: 248К

Пример расчета прямозубой цилиндрической передачи
Пример расчета прямозубой цилиндрической передачи. Выполнен выбор материала, расчет допускаемых напряжений, расчет на контактную и изгибную прочность.


Пример решения задачи на изгиб балки
В примере построены эпюры поперечных сил и изгибающих моментов, найдено опасное сечение и подобран двутавр. В задаче проанализировано построение эпюр с помощью дифференциальных зависимостей, провелен сравнительный анализ различных поперечных сечений балки.


Пример решения задачи на кручение вала
Задача состоит в проверке прочности стального вала при заданном диаметре, материале и допускаемых напряжениях. В ходе решения строятся эпюры крутящих моментов, касательных напряжений и углов закручивания. Собственный вес вала не учитывается


Пример решения задачи на растяжение-сжатие стержня
Задача состоит в проверке прочности стального стержня при заданных допускаемых напряжениях. В ходе решения строятся эпюры продольных сил, нормальных напряжений и перемещений. Собственный вес стержня не учитывается


Применение теоремы о сохранении кинетической энергии
Пример решения задачи на применение теоремы о сохранение кинетической энергии механической системы



Определение скорости и ускорения точки по заданным уравнениям движения
Пример решение задачи на определение скорости и ускорения точки по заданным уравнениям движения


Определение скоростей и ускорений точек твердого тела при плоскопараллельном движении
Пример решения задачи на определение скоростей и ускорений точек твердого тела при плоскопараллельном движении

Подробности Категория: Механика Опубликовано 21.04.2014 14:29 Просмотров: 55509

В классической механике существуют два закона сохранения: закон сохранения импульса и закон сохранения энергии .

Импульс тела

Впервые понятие импульса ввёл французский математик, физик, механик и философ Декарт, назвавший импульс количеством движения .

С латинского «импульс» переводится как «толкать, двигать».

Любое тело, которое движется, обладает импульсом.

Представим себе тележку, стоящую неподвижно. Её импульс равен нулю. Но как только тележка начнёт двигаться, её импульс перестанет быть нулевым. Он начнёт изменяться, так как будет изменяться скорость.

Импульс материальной точки, или количество движения, – векторная величина, равная произведению массы точки на её скорость. Направление вектора импульса точки совпадает с направлением вектора скорости.

Если говорят о твёрдом физическом теле, то импульсом такого тела называют произведение массы этого тела на скорость центра масс.

Как вычислить импульс тела? Можно представить, что тело состоит из множества материальных точек, или системы материальных точек.

Если - импульс одной материальной точки, то импульс системы материальных точек

То есть, импульс системы материальных точек – это векторная сумма импульсов всех материальных точек, входящих в систему. Она равна произведению масс этих точек на их скорости.

Единица измерения импульса в международной системе единиц СИ – килограмм-метр в секунду (кг · м/сек).

Импульс силы

В механике существует тесная связь между импульсом тела и силой. Эти две величины связывает величина, которая называется импульсом силы .

Если на тело действует постоянная сила F в течение промежутка времени t , то согласно второму закону Ньютона

Эта формула показывает связь между силой, которая действует на тело, временем действия этой силы и изменением скорости тела.

Величина, равная произведению силы, действующей на тело, на время, в течение которого она действует, называется импульсом силы .

Как мы видим из уравнения, импульс силы равен разности импульсов тела в начальный и конечный момент времени, или изменению импульса за какое-то время.

Второй закон Ньютона в импульсной форме формулируется следующим образом: изменение импульса тела равно импульсу действующей на него силы. Нужно сказать, что сам Ньютон именно так и сформулировал первоначально свой закон.

Импульс силы – это также векторная величина.

Закон сохранения импульса вытекает из третьего закона Ньютона.

Нужно помнить, что этот закон действует только в замкнутой, или изолированной, физической системе. А замкнутой называют такую систему, в которой тела взаимодействуют только между собой и не взаимодействуют с внешними телами.

Представим замкнутую систему из двух физических тел. Силы взаимодействия тел друг с другом называют внутренними силами.

Импульс силы для первого тела равен

Согласно третьему закону Ньютона силы, которые действуют на тела при их взаимодействии, равны по величине и противоположны по направлению.

Следовательно, для второго тела импульс силы равен

Путём простых вычислений получаем математическое выражение закона сохранения импульса:

где m 1 и m 2 – массы тел,

v 1 и v 2 – скорости первого и второго тел до взаимодействия,

v 1 " и v 2 " скорости первого и второго тел после взаимодействия.

p 1 = m 1 · v 1 - импульс первого тела до взаимодействия;

p 2 = m 2 · v 2 - импульс второго тела до взаимодействия;

p 1 "= m 1 · v 1 " - импульс первого тела после взаимодействия;

p 2 "= m 2 · v 2 " - импульс второго тела после взаимодействия;

То есть

p 1 + p 2 = p 1 " + p 2 "

В замкнутой системе тела только обмениваются импульсами. А векторная сумма импульсов этих тел до их взаимодействия равна векторной сумме их импульсов после взаимодействия.

Так, в результате выстрела из ружья импульс самого ружья и импульс пули изменятся. Но сумма импульсов ружья и находящейся в нём пули до выстрела останется равной сумме импульсов ружья и летящей пули после выстрела.

При стрельбе из пушки возникает отдача. Снаряд летит вперёд, а само орудие откатывается назад. Снаряд и пушка – замкнутая система, в которой действует закон сохранения импульса.

Импульс каждого из тел в замкнутой системе может изменяться в результате их взаимодействия друг с другом. Но векторная сумма импульсов тел, входящих в замкнутую систему, не изменяется при взаимодействии этих тел с течением времени, то есть остаётся постоянной величиной. Это и есть закон сохранения импульса .

Более точно закон сохранения импульса формулируется следующим образом: векторная сумма импульсов всех тел замкнутой системы – величина постоянная, если внешние силы, действующие на неё, отсутствуют, или же их векторная сумма равна нулю.

Импульс системы тел может измениться только в результате действия на систему внешних сил. И тогда закон сохранения импульса действовать не будет.

Нужно сказать, что в природе замкнутых систем не существует. Но, если время действия внешних сил очень мало, например, во время взрыва, выстрела и т.п., то в этом случае воздействием внешних сил на систему пренебрегают, а саму систему рассматривают как замкнутую.

Кроме того, если на систему действуют внешние силы, но сумма их проекций на одну из координатных осей равна нулю, (то есть силы уравновешены в направлении этой оси), то в этом направлении закон сохранения импульса выполняется.

Закон сохранения импульса называют также законом сохранения количества движения .

Самый яркий пример применения закона сохранения импульса – реактивное движение.

Реактивное движение

Реактивным движением называют движение тела, которое возникает при отделении от него с определённой скоростью какой-то его части. Само тело получает при этом противоположно направленный импульс.

Самый простой пример реактивного движения – полёт воздушного шарика, из которого выходит воздух. Если мы надуем шарик и отпустим его, он начнёт лететь в сторону, противоположную движению выходящего из него воздуха.

Пример реактивного движения в природе – выброс жидкости из плода бешеного огурца, когда он лопается. При этом сам огурец летит в противоположную сторону.

Медузы, каракатицы и другие обитатели морских глубин передвигаются, вбирая воду, а затем выбрасывая её.

На законе сохранения импульса основана реактивная тяга. Мы знаем, что при движении ракеты с реактивным двигателем в результате сгорания топлива из сопла выбрасывается струя жидкости или газа (реактивная струя ). В результате взаимодействия двигателя с вытекающим веществом появляется реактивная сила . Так как ракета вместе с выбрасываемым веществом является замкнутой системой, то импульс такой системы не меняется со временем.

Реактивная сила возникает в результате взаимодействия только частей системы. Внешние силы не оказывают никакого влияния на её появление.

До того, как ракета начала двигаться, сумма импульсов ракеты и горючего была равна нулю. Следовательно, по закону сохранения импульса после включения двигателей сумма этих импульсов тоже равна нулю.

где - масса ракеты

Скорость истечени газа

Изменение скорости ракеты

∆ m f - расход массы топлива

Предположим, ракета работала в течение времени t .

Разделив обе части уравнения на t , получим выражение

По второму закону Ньютона реактивная сила равна

Реактивная сила, или реактивная тяга, обеспечивает движение реактивного двигателя и объекта, связанного с ним, в сторону, противоположную направлению реактивной струи.

Реактивные двигатели применяются в современных самолётах и различных ракетах, военных, космических и др.

Из теоремы об изменении количества движения системы можно получить следующие важные следствия.

1. Пусть сумма всех внешних сил, действующих на систему, равна нулю:

Тогда из уравнения (20) следует, что при этом Таким образом, если сумма всех внешних сил, действующих на систему, равна нулю, то вектор количества движения системы будет постоянен по модулю и направлению.

2. Пусть внешние силы, действующие на систему, таковы, что сумма их проекций на какую-нибудь ось (например, ) равна нулю:

Тогда из уравнений (20) следует, что при этом Таким образом, если сумма проекций всех действующих внешних сил на какую-нибудь ось равна нулю, то проекция количества движения системы на эту ось есть величина постоянная.

Эти результаты и выражают закон сохранения количества движения системы. Из них следует, что внутренние силы изменить количество движения системы не могут. Рассмотрим некоторые примеры.

Явление отдачи или отката. Если рассматривать винтовку и пулю как одну систему, то давление пороховых газов при выстреле будет силой внутренней. Эта сила не может изменить количество движения системы, равное до выстрела кулю. Но так как пороховые газы, действуя на пулю, сообщают ей некоторое количество движения, направленное вперед, то они одновременно должны сообщить винтовке такое же количество движения в обратном направлении. Это вызовет движение винтовки назад, т. е. так называемую отдачу. Аналогичное явление получается при стрельбе из орудия (откат).

Работа гребного винта (пропеллера). Винт сообщает некоторой массе воздуха (или воды) движение вдоль оси винта, отбрасывая эту массу назад. Если рассматривать отбрасываемую массу и самолет (или судно) как одну систему, то силы взаимодействия винта и среды, как внутренние, не могут изменить суммарное количество движения этой системы. Поэтому при отбрасывании массы воздуха (воды) назад самолет (или судно) получает соответствующую скорость движения вперед, такую, что общее количество движения рассматриваемой системы остается равным нулю, так как оно было нулем до начала движения.

Аналогичный эффект достигается действием весел или гребных колес

Реактивное движение. В реактивном снаряде (ракете) газообразные продукты горения топлива с большой скоростью выбрасываются из отверстия в хвостовой части ракеты (из сопла ракетного двигателя). Действующие при этом силы давления будут силами внутренними и не могут изменить количество движения системы ракета - продукты горения топлива. Но так как вырывающиеся газы имеют известное количество движения, направленное назад, то ракета получает при этом соответствующую скорость, направленную вперед. Величина этой скорости будет определена в § 114.

Обращаем внимание на то, что винтовой двигатель (предыдущий пример) сообщает объекту, например самолету, движение за счет отбрасывания назад частиц той среды, в которой он движется. В безвоздушном пространстве такое движение невозможно. Реактивный же двигатель сообщает движение за счет отброса назад масс, вырабатываемых в самом двигателе (продукты горения). Движение это в равной мере возможно и в воздухе, и в безвоздушном пространстве.

При решении задач применение теоремы позволяет исключить из рассмотрения все внутренние силы. Поэтому рассматриваемую систему надо стараться выбирать так, чтобы все (или часть) заранее неизвестных сил сделать внутренними.

Закон сохранения количества движения удобно применять в тех случаях, когда по изменению поступательной скорости одной части системы надо определить скорость другой части. В частности, этот закон широко используется в теории удара.

Задача 126. Пуля массой , летящая горизонтально со скоростью и, попадает в установленный на тележке ящик с песком (рис 289). С какой скоростью начнет двигаться тележка после удара, если масса тележки вместе с ящиком равна

Решение. Будем рассматривать пулю и тележку как одну систему Это позволит при решении задачи исключить силы, которые возникают при ударе пули о ящик. Сумма проекций приложенных к системе внешних сил на горизонтальную ось Ох равиа нулю. Следовательно, или где - количество движения системы до удара; - после удара.

Так как до удара тележка неподвижна, то .

После удара тележка и пуля движутся с общей скоростью, которую обозначим через v. Тогда .

Приравнивая правые части выражений , найдем

Задача 127. Определить скорость свободного отката орудия, если вес откатывающихся частей равен Р, вес снаряда , а скорость снаряда по отношению к каналу ствола равна в момент вылета .

Решение. Для исключения неизвестных сил давления пороховых газов рассмотрим снаряд и откатывающиеся части как одну систему.

Обратимся к основному уравнению динамики вращательного движения

и рассмотрим частный случай, когда на тело либо вовсе не действуют внешние силы, либо они таковы, что их равнодействующая не дает момента относительно оси вращения Тогда

Но если изменение величины равно нулю, то, следовательно, сама величина остается постоянной:

Рис. 66. Сальто-мортале.

Итак, если на тело не действуют внешние силы (или результирующий момент их относительно оси вращения равен нулю), то момент количества движения тела относительно оси вращения остается неизменным. Этот закон носит название закона сохранения момента количества движения относительно оси вращения

Приведем несколько примерев, иллюстрирующих закон сохранения момента количества движения.

Гимнаст во время прыжка через голову (рис. 66) поджимает к туловищу руки и ноги. Этим он уменьшает свой момент инерции,

а так как произведение должно оставаться неизменным, то угловая скорость вращения возрастает, и в краткий промежуток времени, пока гимнаст находится в воздухе, он успевает сделать полный оборот.

Шарик привязан к нити, наматываемой на палку; по мере того как уменьшается длина нити, уменьшается момент инерции шарика и, следовательно, возрастает угловая скорость.

Рис. 67 Вращение человека, стоящего на скамье Жуковского. ускорится, если он опустит руки и замедлится если он их поднимет.

Рис. 68. Если мы поднимем велосипедное колесо над головой и приведем его во вращение, то сами вместе с платформой начнем вращаться в противоположную сторону.

Ряд интересных опытов можно проделать, встав на платформу, вращающуюся на шарикоподшипнике (скамья Жуковского). На рис. 67 и 68 изображены некоторые из этих опытов.

Сопоставляя уравнения, выведенные в последних параграфах, с законами прямолинейного поступательного движения, легко заметить, что формулы, определяющие вращательное движение около неподвижной оси, аналогичны формулам для прямолинейного поступательного движения.

В следующей таблице сопоставлены основные величины и уравнения, определяющие эти движения:

(см. скан)

Гироскопы. Реактивный гироскопический эффект. Твердое тело, вращающееся с большой угловой скоростью вокруг оси полной симметрии (свободной оси), называют гироскопом. По закону сохранения вектора момента количества движения гироскоп стремится сохранить направление своей оси вращения неизменным в пространстве и проявляет тем большую устойчивость (т. е. оказывает тем большее сопротивление повороту оси вращения), чем больше его момент инерции и чем больше угловая скорость вращения.

Когда мы, удерживая на вытянутых руках какое-либо массивное неподвижное тело, сообщаем ему движение, например слева направо, то развиваемая телом сила инерции двигает нас в противоположном направлении. Проявление сил инерции вращающегося гироскопа, когда мы поворачиваем его ось вращения, оказывается более сложным и на первый взгляд неожиданным. Так, если мы, удерживая в руках горизонтально направленную ось вращения гироскопа, станем один конец оси приподнимать, а другой опускать, т. е. поворачивать ось в вертикальной плоскости, то почувствуем, что ось оказывает давление на руки не в вертикальной, а в горизонтальной плоскости, прижимая одну нашу руку и оттягивая другую. Если при рассматривании справа вращение гироскопа видно происходящим по движению часовой стрелки (т. е. момент количества движения гироскопа направлен горизонтально налево), то попытка поднять левый конец оси, опуская вниз правый, вызывает движение левого конца оси в горизонтальной плоскости от нас, а правого - на нас.

Такая реакция гироскопа (так называемый гироскопический эффект) объясняется стремлением гироскопа сохранить неизменным свой момент количества движения и притом сохранить его неизменным не только по величине, но и по направлению. Действительно, чтобы при описанном выше повороте оси вращения гироскопа в вертикальной плоскости на угол а (рис 69) момент количества движения геометрически оставался неизменным, гироскоп должен приобрести дополнительное вращение вокруг вертикальной оси с моментом количества движения таким, что геометрически

По указанной причине вращающийся гироскоп, уравновешенный на подвижной оси гирей (рис. 70), приобретает дополнительно

вращение вокруг вертикальной оси, если гирю, уравновешивавшую гироскоп, немного отодвинуть от точки опоры оси (перевешивая, гиря сообщает оси некоторый наклон, что и вызывает обращение оси гироскопа вокруг точки опоры в направлении, которое соответствует направлению вектора на рис. 69).

По той же причине ось волчка приобретает вследствие опрокидывающего действия силы тяжести круговое движение, которое называют прецессией (рис. 71).

Итак, если к вращающемуся гироскопу приложить пару сил, стремящуюся повернуть его около оси, перпендикулярной к оси вращения, то гироскоп действительно станет поворачиваться, но только вокруг третьей оси, перпендикулярной к первым двум. Чтобы повернуть вращающийся гироскоп (например, в направлении как показано на рис. 72), нужно к оси гироскопа приложить вращающий момент в плоскости, перпендикулярной к направлению поворота.

Рис. 71. Схема движения волчка.

Более детальный анализ явлений, аналогичных описанным выше, показывает, что гироскоп стремится расположить ось своего вращения таким образом, чтобы она образовала возможно меньший угол с осью вынуждаемого вращения и чтобы оба вращения совершались в одном и том же направлении.

Это свойство гироскопа используется в гироскопическом компасе, получившем широкое распространение в особенности в военном флоте. Гирокомпас представляет собой быстро вращающийся волчок (мотор трехфазного тока, делающий до 25 000 об/мин), который на особом поплавке плавает в сосуде со ртутью и ось которого устанавливается в плоскости меридиана. В данном случае источником внешнего вращающего момента является суточное вращение Земли вокруг ее оси. Под его действием ось вращения гироскопа стремится совпасть по направлению с осью вращения Земли, а так как вращение Земли действует на гироскоп непрерывно, то ось гироскопа, наконец, и принимает это положение, т. е. устанавливается вдоль меридиана, и продолжает в нем оставаться совершенно так же, как обычная магнитная стрелка.

Гироскопы часто применяют в качестве стабилизаторов. Их устанавливают для уменьшения качки на океанских пароходах.

Были сконструированы также стабилизаторы для однорельсовых железных дорог; массивный быстро вращающийся гироскоп, помещаемый внутри вагона однорельсовой дороги, препятствует опрокидыванию вагона. Роторы для гироскопических стабилизаторов изготовляют весом от 1 до 100 и более тонн.

В торпедах гироскопические приборы, автоматически действуя на рулевое управление, обеспечивают прямолинейность движения торпеды в направлении выстрела.

Рис. 73. Прецессия земной оси.

Суточное вращение Земли делает ее подобной гироскопу. Так как Земля представляет собой не шар, а фигуру, близкую к эллипсоиду, то притяжение Солнца создает равнодействующую, не проходящую через центр масс Земли (как было бы в случае шара). Вследствие этого возникает вращающий момент, который стремится повернуть ось вращения Земли перпендикулярно к плоскости ее орбиты (рис. 73). В связи с этим земная ось испытывает прецессионное движение (с полным оборотом примерно за 25 800 лет).