Классификация информации. Классификация информации Наличием чего определяется степень организованности социальной системы

Системы разделяются на классы по различным признакам, и в зависимости от решаемой задачи можно выбрать разные принци­пы классификации. При этом систему можно охарактеризовать одним или несколькими признаками. Чаще всего системы классифицируются следующим образом:

· по виду научного направления - математические, физи­ческие, химические и т. п.;

· по степени определенности функционирования: детерминированные и вероятностные. Детерминированной называют систему, если ее поведение можно абсолютно точно предвидеть. Система, состояния которой зависит не только от контролируемых, но и от неконтролируемых воздействий или если в ней самой находится источник случайности, носит название вероятностной . Приведем пример стохастических систем, это - заводы, аэропорты, сети и системы ЭВМ, магазины, предприятия бытового обслуживания и т.д.

· по степени организованности - хорошо организован­ные, плохо организованные (диффузные), самоорганизующиеся системы.

· по происхождению различают системы естественные, созданные в ходе естественной эволюции и в целом не подверженные влиянию человека (клетка), и искусственные, созданные под воздействием человека, обусловленные его интересами и целями (машина).

· по основным элементам системы могут быть разделены на абстрактные, все элементы которых являются понятиями (языки, философские системы, системы счисления), и конкретные, в которых присутствуют материальные элементы.

· по взаимодействию со средой различают системы замкнутые и открытые. Замкнутая система в процессе своего функционирования использует только ту информацию, которая вырабатывается в ней самой (система кондиционирования воздуха в замкнутом объеме). В открытойсистеме функционирование определяется как внутренней, так и внешней, поступающей на входы, информацией. Большинство изучаемых систем являются открытыми, т.е. они испытывают воздействие среды и реагируют на него и, в свою очередь, оказывают воздействие на среду.

· по степени сложности различают простые, сложные и очень сложные системы. Простые системы характеризуются небольшим числом элементов, связи между которыми легко поддаются описанию (средства механизации, простейшие организмы). Сложные системы состоят из большого числа элементов и характеризуются разветвленной структурой, выполняют более сложные функции. Изменения отдельных элементов и (или) связей влечет за собой изменение многих других элементов. Но все же отдельные конкретные состояния системы могут быть описаны (автоматы, ЭВМ, галактики). Очень сложные системы характеризуются большим числом разнообразных элементов, обладают множеством структур, не могут быть полностью описаны (мозг, хозяйство).

· по естественному разделению системы делятся на: технические, биологические, социально-экономические. Технические – это искусственные системы, созданные человеком (машины, автоматы, системы связи). Биологические – различные живые организмы, популяции, биогеоценозы и т.п. Социально-экономические – системы существующие в обществе, обусловленные присутствием и деятельностью человека (хозяйство, отрасль, бригада и т.п.).

· по определению выходных сигналов . Динамические системы характеризуются тем, что их выходные сигналы в данный момент времени определяются характером входных воздействий в прошлом и настоящем (зависит от предыстории). В противном случае системы называют статическими. Примером динамических систем является биологические, экономические, социальные системы; такие искусственные системы как завод, предприятия, поточная линия и т.д.

· по изменению во времени . Если вход и выход системы измеряется или изменяется во времени дискретно, через шаг t, то система называется дискретной . Противоположным понятием является понятие непрерывной системы . Например: ЭВМ, электронные часы, электросчетчик - дискретные системы; песочные часы, солнечные часы, нагревательные приборы и т.д. - непрерывные системы.

· По типу организации : централизованные (однополюсные, иерархические, биполярные с входным и выходным полюсами); децентрализованные (многополюсные сети, сети без полюсов с различной произвольной топологией; матрич­ные сети с регулярной топологией, сети смешанной топо­логии: регулярной и произвольной)

· По составу функций : одно- или многофункциональ­ные, с постоянным или переменным составом функций;

Объектом изучения системного анализа являются в большинстве своем стохастические открытые сложные и очень сложные системы любого происхождения.

Рассмотрим некоторые виды систем более подробно.

Хорошо организованные системы. Представить анализируемый объект или процесс в виде «хорошо организованной системы» означает определить элементы системы, их взаимосвязь, правила объединения в более крупные компоненты, т. е. определить связи между всеми компонентами и целями системы, с точки зрения которых рассматривается объект или ради достижения которых создается система. Проблемная ситуация может быть описана в виде математического выражения, связывающего цель со сред­ствами, т. е. в виде критерия эффективности, критерия функци­онирования системы, который может быть представлен сложным уравнением или системой уравнений. Решение задачи при пред­ставлении ее в виде хорошо организованной системы осуществ­ляется аналитическими методами формализованного представле­ния системы.

Примеры хорошо организованных систем: солнечная система, описывающая наиболее существенные закономерности движения планет вокруг Солнца; отображение атома в виде планетарной системы, состоящей из ядра и электронов; описание работы сложного электронного устройства с помощью системы уравне­ний, учитывающей особенности условий его работы (наличие шумов, нестабильности источников питания и т. п.). Для отображения объекта в виде хорошо организованной системы необходимо выделять существенные и не учитывать относительно несущественные для данной цели рассмотрения компоненты: например, при рассмотрении солнечной системы не учитывать метеориты, астероиды и другие мелкие по сравнению с планетами элементы межпланетного пространства.

Описание объекта в виде хорошо организованной системы применяется в тех случаях, когда можно предложить детермини­рованное описание и экспериментально доказать правомерность его применения, адекватность модели реальному процессу. По­пытки применить класс хорошо организованных систем для представления сложных многокомпонентных объектов или мно­гокритериальных задач плохо удаются: они требуют недопусти­мо больших затрат времени, практически нереализуемы и неадек­ватны применяемым моделям.

Плохо организованные системы. При представлении объекта в виде «плохо организованной или диффузной системы» не ста­вится задача определить все учитываемые компоненты, их свой­ства и связи между ними и целями системы. Система харак­теризуется некоторым набором макропараметров и закономер­ностями, которые находятся на основе исследования не всего объекта или класса явлений, а на основе определенной с помо­щью некоторых правил выборки компонентов, характеризующих исследуемый объект или процесс. На основе такого выборочного исследования получают характеристики или закономерности (статистические, экономические) и распространяют их на всю систему в целом. При этом делаются соответствующие оговорки. Например, при получении статистических закономерностей их распространяют на поведение всей системы с некоторой довери­тельной вероятностью.

Подход к отображению объектов в виде диффузных систем широко применяется при: описании систем массового обслужива­ния, определении численности штатов на предприятиях и учреж­дениях, исследовании документальных потоков информации в си­стемах управления и т. д.

Самоорганизующиеся системы. Отображение объекта в виде самоорганизующейся системы - это подход, позволяющий ис­следовать наименее изученные объекты и процессы. Самооргани­зующиеся системы обладают признаками диффузных систем: стохастичностью поведения, нестационарностью отдельных па­раметров и процессов. К этому добавляются такие признаки, как непредсказуемость поведения; способность адаптироваться к из­меняющимся условиям среды, изменять структуру при взаимо­действии системы со средой, сохраняя при этом свойства целост­ности; способность формировать возможные варианты поведе­ния и выбирать из них наилучший и др. Иногда этот класс разбивают на подклассы, выделяя адаптивные или самоприс­посабливающиеся системы, самовосстанавливающиеся, самовос­производящиеся и другие подклассы, соответствующие различ­ным свойствам развивающихся систем. Примеры: биологические организации, коллективное поведение людей, организация управления на уровне предприятия, отрасли, государства в целом, т.е. в тех системах, где обязательно имеется человеческий фактор.

При применении отображения объекта в виде самоорганизующейся системы задачи определения целей и выбора средств, к; правило, разделяются. При этом задача выбора целей может быть, в свою очередь, описана в виде самоорганизующейся системы, т. е. структура функциональной части АСУ, структура целей плана может разбиваться так же, как и структура обеспечивающей части АСУ (комплекс технических средств АСУ) или организационная структура системы управления.

Большинство примеров применения системного анализа основано на представлении объектов в виде самоорганизующихся систем.

Большие и сложные системы . Существует ряд подходов к разделению систем по сложности. В частности, Г. Н. По варовв зависимости от числа элементов, входящих в систему, выделяет четыре класса систем: малые системы (10...10 3 элементов), сложные (10 4 ...10 7 элементов), ультрасложные (10 7 . ..10 30 элементов) суперсистемы (10 30 .. .10 200 элементов). Так как понятие элемент; возникает относительно задачи и цели исследования системы, то и данное определение сложности является относительным, а не абсолютным.

Английский кибернетик С. Бир классифицирует все кибернетические системы на простые и сложные в зависимости от способа описания: детерминированного или теоретико-вероятностного. А. И. Берг определяет сложную систему как систему, которую можно описать не менее чем на двух различных мате­матических языках (например, с помощью теории дифференци­альных уравнений и алгебры Буля).

Очень часто сложными системами называют системы, кото­рые нельзя корректно описать математически, либо потому, что в системе имеется очень большое число элементов, неизвестным образом связанных друг с другом, либо неизвестна природа явлений, протекающих в системе. Все это свидетельствует об отсутствии единого определения сложности системы.

Так же дается следующее определение: сложной системой называется система, в модели которой недостаточно информации для эффективного управления этой системой. Таким образом, признаком простоты системы является достаточность информации для ее управления. Если же результат управления, полученный с помощью модели, будет неожиданным, то такую систему относят к сложной. Для перевода системы в разряд простой необходимо получение недостающей информации о ней и включение ее в модель.

При разработке сложных систем возникают проблемы, относящиеся не только к свойствам их составляющих элементов и подсистем, но также к закономерностям функционирования системы в целом. При этом появляется широкий круг специфи­ческих задач, таких, как определение общей структуры системы; организация взаимодействия между элементами и подсистемами; учет влияния внешней среды; выбор оптимальных режимов функ­ционирования системы; оптимальное управление системой и др.

Чем сложнее система, тем большее внимание уделяется вышеуказанным вопросам. Математической базой исследования сложных систем является теория систем. В теории систем большой системой сложной, системой большого масштаба,(Large Scale Systems) называют систему, если она состоит из большого числа взаимосвязанных и взаимодействующих между собой элементов и способна выполнять сложную функцию.

От сложных систем необходимо отличать большие системы.

Под большой системой понимается совокупность материаль­ных ресурсов, средств сбора, передачи и обработки информации, людей-операторов, занятых на обслуживании этих средств, и лю­дей-руководителей, облеченных надлежащими правами и ответ­ственностью для принятия решений. Материальные ресурсы - это сырье, материалы, полуфабрикаты, денежные средства, раз­личные виды энергии, станки, оборудование, люди, занятые на выпуске продукции, и т. д. Все указанные элементы ресурсов объединены с помощью некоторой системы связей, которые по заданным правилам определяют процесс взаимодействия между элементами для достижения общей цели или группы целей. Таким образом, система , для актуализации модели которой в целях управления недостает материальных ресурсов (машинного времени, емкости памяти, других материальных средств моделирования) называетсябольшой . К таким системам относятся экономические, организационно-управленческие, биологические нейрофизиологические, и т.п. системы.

Характерные особенности больших систем. К подобным отличительным особенностям относятся следующие:

· большое число элементов в системе (сложность системы);

· взаимосвязь и взаимодействие между элементами;

· иерархичность структуры управления;

· обязательное наличие человека в контуре управления, на которого возлагается часть наиболее ответственных функций управления.

Примеры больших систем: информационная система; пассажирский транспорт крупного города; производственный процесс; система управления полетом крупного аэродрома; энергетическая система и др.

Способом перевода больших систем в простые является создание новых более мощных средств вычислительной техники. Однако, четкой границы, отделяющей простые системы от больших, нет. Деление это условное и возникло из-за появления систем, имеющих в своем составе совокупность подсистем с наличием функциональной избыточности. Простая система может находиться только в двух состояниях: состоянии работоспособности (исправном) и состоянии отказа (неисправном). При отказе элемента простая система либо полностью прекращает выполнение своей функции, либо продолжает ее выполнение в полном объеме, если отказавший элемент резервирован. Большая система при отказе отдельных элементов и даже целых подсистем не всегда теряет работоспособность, зачастую только снижаются характеристики ее эффективности. Это свойство больших систем обусловлено их функциональной избыточностью и, в свою очередь, затрудняет формулировку понятия «отказ» системы.

Контрольные вопросы

1. Что представляет собой общая теория систем?

2. Что такое кибернетика?

3. Что такое теория информации?

4. Что такое теория игр?

5. Что такое факторный анализ?

6. Опишите подходы к созданию общей теории систем?

7. Раскройте понятие «система».

8. В чем особенности сложной системы?

9. Чем сложные системы отличаются от больших систем?

10. Дайте определения следующим понятиям: объект, подсистема, структура, функция, связь.

11. Опишите основные закономерности систем.

12. Дайте классификацию систем по основным признакам.

13. Опишите отличие сложных систем от больших.


Тема№4
Моделирование систем

4.1. Понятия «модель» и «моделирование». Абстрактная модель системы произвольной природы

Так как общая теория систем рассматривает не некоторые конкретные системы, а то общее, что есть в различных системах независимо от их природы, предметом ее изучения являются абстрактные модели соответствующих реальных систем.

Модель является представлением реального объекта, системы или понятия в некоторой форме, отличной от формы их реального существования.

Всякая модель - это некоторая аналогия: для одной системы должна существовать другая система, элементы которой с некоторой точки зрения подобны элементам первой. Должно существовать отображение, которое элементам моделируемой системы ставит в соответствие элементы некоторой другой системы - моделирующей. Кроме того, должно существовать отображение, которое свойствам элементов моделируемой системы ставит в соответствие свойства элементов моделирующей системы.


Для большинства случаев абстрактная модель системы произвольной природы может быть представлена с помощью схемы, изображенной на рисунке 4.1, которая является, по сути, иллюстрацией к введенным понятиям.

Система не существует сама по себе, а выделяется из окружающей среды по какому-либо системообразующему признаку, в качестве которого чаще всего выступает цель системы. Взаимодействие системы с внешней средой осуществляется через вход и выход системы (множество входных и выходных параметров).

Под входными параметрами системы понимается комплекс параметров внешней среды (в том числе выходные параметры систем, внешних по отношению к рассматриваемой, например, систем управления), оказывающих значительное влияние на состояние и значение выходных параметров рассматриваемой системы и поддающихся учету и анализу средствами, имеющимися в распоряжении исследователя.

Выходные параметры - это комплекс параметров системы, оказывающих непосредственное влияние на состояние внешней среды и значимых с точки зрения цели исследования.

Важной особенностью функционирования сложных систем является принципиальная неопределенность истинного состояния внешней среды в каждый момент времени. Природа этой неопределенности связана с наличием ряда причин, важнейшие из которых обусловлены следующими факторами.

· О некоторых, возможно, непосредственно влияющих на поведение системы параметрах внешней среды (то есть параметрах, которые следовало бы отнести к категории «входных») исследователь часто не знает, и, следовательно, не может их учитывать.

· Некоторые параметры внешней среды не могут быть измерены в силу технической неприспособленности информационных средств.

· Численные значения учитываемых параметров оцениваются с ошибками измерений, определяемыми с одной стороны - внутренними шумами измерительных устройств, а с другой - внешними помехами.

Воздействие на систему подобных неучтенных факторов компенсируется введением в модель дополнительных связей - внешних возмущающих воздействий или «шумов».

Система может находиться в различных состояниях. Состояние любой системы в определенный момент времени можно с определенной точностью охарактеризовать совокупностью значений параметров состояния .

Таким образом, система характеризуется тремя группами переменных:

1. Входные переменные, которые генерируются системами, внешними относительно исследуемой

1.3.2. Классификация систем по степени организованности и ее роль в выборе методов моделирования систем

Впервые разделение систем по степени организованности по аналогии с классификацией Г.Саймона и А.Ньюэлла (хорошо структризованные, плохо структуризованные и неструктуризованные проблемы) было предложено В.В.Налимовым , который выделил класс хорошо организованных и класс плохо организованных или вероятностных систем.

Позднее к этим двум классам был добавлен еще класс самоорганизующихся, сложных, систем, который включает рассматриваемые иногда в литературе раздельно классы саморегулирующихся, самообучающихся, самонастраивающихся и т.п. систем.

Выделенные классы практически можно рассматривать как подходы к моделированию объекта или решаемой задачи, которые могут выбираться в зависимости от стадии познания объекта и возможности получения информации о нем.

Ниже приведена краткая характеристика этих классов.

1. Хорошо организованные (детерминированные) системы – системы, для которых исследователю удается определить все элементы и их взаимосвязи между собой и с целями системы в виде детерминированных (аналитических, графических) зависимостей.

Для отображения сложного объекта в виде детерминированной системы приходится выделять существенные и не учитывать относительно несущественные для конкретной цели рассмотрения компоненты.

Представление объекта в виде хорошо организованной системы применяется в тех случаях, когда может быть предложено детерминированное описание и экспериментально показана правомерность его применения, т. е. экспериментально доказана адекватность модели реальному объекту или процессу.

2. Плохо организованные (вероятностные) системы. Такие системы характеризуются вероятностными (стохастическими) параметрами, определенными статистическими методами на достаточно представительной выборке факторов, представляющих исследуемый объект или процесс.

Моделирование объектов в виде вероятностных систем находит широкое применение при определении пропускной способности систем разного рода, при определении численности штатов в обслуживающих, например, ремонтных цехах предприятия и в обслуживающих учреждениях (для решения подобных задач применяют методы теории массового обслуживания), при исследовании документальных потоков информации и т.д.

3. Саморганизующиеся (развивающиеся или сложные) системы характеризуются рядом признаков, особенностей, приближающих их к реальным развивающимся объектам.

Эти особенности, как правило, обусловлены наличием в системе активных элементов (человека), являющихся с одной стороны источником развития и адаптивности системы во внешней среде, но с другой стороны – источником неопределенности и непредсказуемости поведения, затрудняяющих управление. Сложные системы отличаются нестационарностью параметров и стохастичностью поведения.

Перечисленные особенности объясняются с помощью закономерностей систем, основные группы которых перечислены выше.

Анализ деятельности предприятий показывает, что если не создавать условия для развития предприятия такие, как способность адаптироваться, вырабатывать варианты поведения, формулировать цели, изменять структуру и т.п., то предприятие не выживет в условиях нестабильной среды. А реализацию этих свойств можно обеспечить, изучая и используя закономерности функционирования и развития самоорганизующихся систем.

По мере накопления опыта исследования и преобразования систем, обладающих подобными свойствами, была осознана их основная особенность – принципиальная ограниченность формализованного описания развивающихся, самоорганизующихся систем . Эта особенность, т. е. необходимость сочетания формальных методов и методов качественного анализа, и положена в основу большинства моделей и методик системного анализа. При формировании таких моделей меняется привычное представление о моделях, характерное для математического моделирования и прикладной математики. Изменяется представление и о доказательстве адекватности таких моделей.

Адекватность модели доказывается как бы последовательно (по мере ее формирования) путем оценки правильности отражения в каждой последующей модели компонентов и связей, необходимых для достижения поставленных целей. Иными словами, такое моделирование становится как бы своеобразным «механизмом» развития системы.

Практическая реализация такого «механизма» связана с необходимостью разработки языка моделирования процесса принятия решения. В основу такого языка может быть положен один из методов моделирования систем: например, теоретико-множественные представления, математическая логика, математическая лингвистика , имитационное динамическое моделирование, информационный подход, и т. д. По мере развития модели методы могут меняться.

Представление объекта в виде самоорганизующейся системы применяется для решения наиболее сложных проблем, присущих децентрализованным системам с большой начальной неопределенностью и непредсказуемостью поведения агентов экономических отношений. При этом системный «механизм» развития (самоорганизации) может быть реализован в форме соответствующего подхода (см. Постепенная формализация модели принятия решения. Графосемиотическое моделирование или методики системного анализа ) с использованием различных методов для реализации ее этапов .

Кратко охарактеризованные классы систем удобно использовать как подходы на начальном этапе моделирования любой задачи. Этим классам поставлены в соответствие методы формализованного представления систем , Определив класс системы, можно дать рекомендации по выбору метода, который позволит более адекватно ее отобразить.

Если предварительный анализ проблемной ситуации показывает, что она может быть представлена в виде детерминированных систем, то можно выбирать методы моделирования из классов аналитических и графических методов. Если специалисты по теории систем и системному анализу рекомендуют представить ситуацию в виде плохо организованных или вероятностных систем, то следует обратиться прежде всего к статистическому моделированию .

При представлении ситуации классом самоорганизующихся систем следует применять методы дискретной математики, нечеткой логики и когнитивного моделирования, в частности, теоретико-множественные представления, математическую логику , математическую лингвистику.

Предыдущая

Степень организованности системы

Организованность или упорядоченность организованности системы R оценивается по формуле

R=1-Э реал/ Э макс, (2.3)

где Эреал - реальное или текущее значение энтропии,

Эмакс - максимально возможная энтропия или неопределенность по структуре и функциям системы.

Если система полностью детерминированная и организованная то Э реал = 0 и R = 1. Снижение энтропии системы до нулевого значения означает полную «заорганизованность» системы и приводит к вырождению системы. Если система полностью дезорганизованная, то R=0 и Э реал =Э макс.

Качественная классификация систем по степени организованности была предложена В. В. Налимовым, который выделил класс хорошо организованных и класс плохо организованных, или диффузных систем. Позднее к этим классам был добавлен еще класс самоорганизующихся систем. Важно подчеркнуть, что наименование класса системы не является ее оценкой. В первую очередь, это можно рассматривать как подходы к отображению объекта или решаемой задачи, которые могут выбираться и зависимости от стадии познания объекта и возможности получения информации о нем.

Хорошо организованные системы

Если исследователю удается определить все элементы системы и их взаимосвязи между собой и с целями системы и вид детерминированных (аналитических или графических) зависимостей, то возможно представление объекта в виде хорошо организованной системы. То есть представление объекта в виде хорошо организованной системы применяется в тех случаях, когда может быть предложено детерминированное описание и экспериментально показана правомерность его применения (доказана адекватность модели реальному объекту).

Такое представление успешно применяется при моделировании технических и технологических систем. Хотя, строго говоря, даже простейшие математические соотношения, отображающие реальные ситуации, также не являются абсолютно адекватными, поскольку, например, при суммировании яблок не учитывается, что они не бывают абсолютно одинаковыми, а вес можно измерить только с некоторой точностью. Трудности возникают при работе со сложными объектами (биологическими, экономическими, социальными и др.). Без существенного упрощения их нельзя представить в виде хорошо организованных систем. Поэтому для отображения сложного объекта в виде хорошо организованной системы приходится выделять только факторы, существенные для конкретной цели исследования. Попытки применить модели хорошо организованных систем для представления сложных объектов практически часто нереализуемы, так как, в частности, не удается поставить эксперимент, доказывающий адекватность модели. Поэтому в большинстве случаев при представлении сложных объектов и проблем на начальных этапах исследования их отображают классами, рассмотренными ниже.

Плохо организованные (или диффузные) системы

Если не ставится задача определить все учитываемые компоненты и их связи с целями системы, то объект представляется в виде плохо организованной (или диффузной) системы. Для описания свойств таких систем можно рассматривать два подхода: выборочный и макропараметрический.

При выборочном подходе закономерности в системе выявляются на основе исследования не всего объекта или класса явлений, а путем изучения достаточно представительной (репрезентативной) выборки компонентов, характеризующих исследуемый объект или процесс. Выборка определяется с помощью некоторых правил. Полученные на основе такого исследования характеристики или закономерности распространяют на поведение системы в целом.

Пример . Если нас интересует средняя цена на хлеб в каком-либо городе, то можно было бы последовательно объехать или обзвонить все торговые точки города, что потребовало бы много времени и средств. А можно пойти другим путем: собрать информацию в небольшой (но репрезентативной) группе торговых точек, вычислить среднюю цену и обобщить ее на весь город.

При этом нельзя забывать, что полученные статистические закономерности справедливы для всей системы с какой-то вероятностью, которая оценивается с помощью специальных приемов, изучаемых математической статистикой.

При макропараметрическом подходе свойства системы оценивают с помощью некоторых интегральных характеристик (макропараметров).

Примеры :

1. При использовании газа для прикладных целей его свойства не определяют путем точного описания поведения каждой молекулы, а характеризуют макропараметрами - давлением, температурой и т.д. Основываясь на этих параметрах, разрабатывают приборы и устройства, использующие свойства газа, не исследуя при этом поведение каждой молекулы.

2. ООН при оценке уровня качества системы здравоохранения государства применяет в качестве одной из интегральных характеристик количество детей, умерших до пяти лет, на тысячу новорожденных.

Отображение объектов в виде диффузных систем находит широкое применение при определении пропускной способности систем разного рода, при определении численности штатов в обслуживающих, например ремонтных, цехах предприятия и в обслуживающих учреждениях, при исследовании документальных потоков информации и т.д.

Самоорганизующиеся системы

Класс самоорганизующихся, или развивающихся, систем характеризуется рядом признаков, особенностей, которые, как правило, обусловлены наличием в системе активных элементов, делающих систему целенаправленной. Отсюда вытекают особенности экономических систем, как самоорганизующихся систем, по сравнению с функционированием технических систем:

· нестационарность (изменчивость) отдельных параметров системы и стохастичность ее поведения;

· уникальность и непредсказуемость поведения системы в конкретных условиях. Благодаря наличию активных элементов системы появляется как бы "свобода воли", но в то же время возможности ее ограничены имеющимися ресурсами (элементами, их свойствами) и характерными для определенного типа систем структурными связями;

· способность изменять свою структуру и формировать варианты поведения, сохраняя целостность и основные свойства (в технических и технологических системах изменение структуры, как правило, приводит к нарушению функционирования системы или даже к прекращению существования как таковой);

· способность противостоять энтропийным (разрушающим систему) тенденциям. В системах c активными элементами не выполняется закономерность возрастания энтропии и даже наблюдаются негэнтропийные тенденции, т. е. собственно самоорганизация;

· способность адаптироваться, к изменяющимся условиям. Это хорошо по отношению к возмущающим воздействиям и помехам, но плохо, когда адаптивность проявляется и к управляющим воздействиям, затрудняя управление системой;

· способность и стремление к целеобразованию;

· принципиальная неравновесность.

Легко видеть, что хотя часть этих особенностей характерна и для диффузных систем (стохастичность поведения, нестабильность отдельных параметров), однако в большинстве своем они являются специфическими признаками, существенно отличающими этот класс систем от других и затрудняющими их моделирование.

Рассмотренные особенности противоречивы. Они в большинстве случаев являются и положительными и отрицательными, желательными и нежелательными для создаваемой системы. Их не сразу можно понять и объяснить для того, чтобы выбрать и создать требуемую степень их проявления.

При этом следует иметь в виду важное отличие открытых развивающихся систем с активными элементами от закрытых. Пытаясь понять принципиальные особенности моделирования таких систем, уже первые исследователи отмечали, что, начиная с некоторого уровня сложности, систему легче изготовить и ввести в действие, преобразовать и изменить, чем отобразить формальной моделью. По мере накопления опыта исследования и преобразования таких систем это наблюдение подтверждалось, и была осознана их основная особенность - принципиальная ограниченность формализованного описания развивающихся, самоорганизующихся систем.

По этому поводу фон Нейманом была высказана следующая гипотеза: «У нас нет полной уверенности в том, что в области сложных задач реальный объект не может являться простейшим описанием самого себя, т. е. что всякая попытка описать его с помощью обычного словесного или формально-логического метода не приведет к чему-то более сложному, запутанному и трудновыполнимому...» .

Необходимость сочетания формальных методов и методов качественного анализа и положена в основу большинства моделей и методик системного анализа. При формировании таких моделей меняется привычное представление о моделях, характерное для математического моделирования и прикладной математики. Изменяется представление и о доказательстве адекватности таких моделей.

Основную конструктивную идею моделирования при отображении объекта классом самоорганизующихся систем можно сформулировать следующим образом: накапливая информацию об объекте, фиксируя при этом все новые компоненты и связи и применяя их можно получать отображения последовательных состояний развивающейся системы, постепенно создавая все более адекватную модель реального, изучаемого или создаваемого объекта. При этом информация может поступать от специалистов различных областей знаний и накапливаться во времени по мере ее возникновения (в процессе познания объекта).

Адекватность модели также доказывается как бы последовательно (по мере её формирования) путем оценки правильности отражения в каждой последующей модели компонентов и связей, необходимых для достижения поставленных целей.

Открытые и закрытые системы

Понятие открытой системы ввел Л. фон Берталанфи. Основные отличительные черты открытых систем – способность обмениваться со средой массой, энергией и информацией. В отличие от них закрытые или замкнутые системы предполагаются полностью лишенными этой способности, изолированными от среды.

Участники «общества по разработке ОТС» А. Холл и I". Фейджин на основании собственного определения системы приводят такую классификацию систем: Если изменение в каждой отдельной части системы вызывает изменение всех других частей и в целой системе, то в этом случае система является целостной . Если изменение каждой части системы не вызывает изменение других частей, то система называется суммативной . Совершенно ясно, что благодаря такому разделению Холл и Фейджин получают возможность охватывать в своей теории значительно больший круг систем, чем Берталанфи.

Несмотря на то, что классификация систем Холла и Фейджина более детальна, чем классификация Берталанфи, а их определение системы более широко по сравнению с определением системой Берталанфи, тем не менее, эти модификации не вносят принципиальных изменений в существо «общей теории систем». И у Берталанфи, и у Холла - Фейджина речь идет о построении определенного математического аппарата, способного дать описание «поведения» достаточно обширного класса системных предметов.

Другие признаки

По однородности или разнообразию структурных элементов системы бываютгомогенные илиоднородные и гетерогенные илиразнородные , а такжесмешанного типа. В гомогенных системах, например, в газах, жидкостях или в популяции организмов, структурные элементы системы однородны и поэтому взаимозаменяемы. Гетерогенные же системы состоят из разнородных элементов, не обладающих свойством взаимозаменяемости.

По равновесию системы делятся наравновесные илиуравновешенные и неравновесные илинеуравновешенные. В равновесных системах, если идут изменения одновременно в двух противоположных направлениях (противоположные процессы), то они взаимно компенсируются или нейтрализуются на некотором уровне. Каждое из возникающих изменений уравновешивается другим, ему противоположным, и система сохраняется в равновесном состоянии. Примером равновесных систем является организм, общество, экосистема и др. В неуравновешенных системах, наоборот, если идут изменения одновременно в двух противоположных направлениях, то одно из нихпреобладает, система преобразуется в эту сторону и равновесие нарушается. Однако это нарушение равновесия иногда может совершаться столь медленно, что система производит впечатление равновесной (ложное равновесие). Примером ложного равновесия является пламя.

Системы разделяются на классы по различным признакам, и в зависимости от решаемой задачи можно выбрать разные принципы классификации. При этом систему можно охарактеризовать одним или несколькими признаками:

· по виду научного направления - математические, физические, химические и т. п.;

· по виду формализованного аппарата представления системы - детерминированные и стохастические;

· по степени организованности -хорошо организованные, плохо организованные (диффузные), самоорганизующиеся системы.

· по обусловленности действия различают системы детерминированные и стохастические (вероятностные).

· по происхождению различают системы естественные, созданные в ходе естественной эволюции и в целом не подверженные влиянию человека (клетка), искусственные, созданные под воздействием человека, обусловленные его интересами и целями (машина) и виртуальные (воображаемые и, хотя они в действительности реально не существующие, но функционирующие так же, как и в случае, если бы они реально существовали).

· по основным элементам системы могут быть разделены на абстрактные, все элементы которых являются понятиями (языки, философские системы, системы счисления), и конкретные, в которых присутствуют материальные элементы.

· по взаимодействию со средой различают системы замкнутые и открытые. Большинство изучаемых систем являются открытыми, т.е. они испытывают воздействие среды и реагируют на него и, в свою очередь, оказывают воздействие на среду.

· по степени сложности различают простые, сложные и очень сложные системы.

· по естественному разделению системы делятся на: технические, биологические, социально-экономические.

· по описанию переменных системы : с качественными переменными (имеющие только лишь содержательное описание); с количественными переменными (имеющие дискретно или непрерывно описываемые количественным образом переменные).

· по типу описания закона (законов) функционирования системы: типа “Черный ящик” (неизвестен полностью закон функционирования системы; известны только входные и выходные сообщения системы); не параметризованные (закон не описан, описываем с помощью хотя бы неизвестных параметров, известны лишь некоторые априорные свойства закона); параметризованные (закон известен с точностью до параметров и его возможно от ADE нести к некоторому классу зависимостей); типа “Белый (прозрачный) ящик” (полностью известен закон).

· По способу управления системой (в системе): управляемые извне системы (без обратной связи, регулируемые, управляемые структурно, информационно или функционально); управляемые изнутри (самоуправляемые или саморегулируемые - программно управляемые, регулируемые автоматически, адаптируемые - приспосабливаемые с помощью управляемых изменений состояний и самоорганизующиеся - изменяющие во времени и в пространстве свою структуру наиболее оптимально, упорядочивающие свою структуру под воздействием внутренних и внешних факторов); с комбинированным управлением (автоматические, полуавтоматические, автоматизированные, организационные).

Детерминированной называют систему, если ее поведение можно абсолютно точно предвидеть. Система, состояния которой зависит не только от контролируемых, но и от неконтролируемых воздействий или если в ней самой находится источник случайности, носит название стохастической. Приведем пример стохастических систем, это – заводы, аэропорты, сети и системы ЭВМ, магазины, предприятия бытового обслуживания и т.д.

Динамические системы характеризуются тем, что их выходные сигналы в данный момент времени определяются характером входных воздействий в прошлом и настоящем (зависит от предыстории). В противном случае системы называют статическими.

Примером динамических систем является биологические, экономические, социальные системы; такие искусственные системы как завод, предприятия, поточная линия и т.д.

Различают системы линейные и нелинейные . Для линейных систем реакция на сумму двух иди более различных воздействий эквивалентна сумме реакций на каждое возмущение в отдельности, для нелинейных – это не выполняется.

Если параметры систем изменяются во времени, то она называется нестационарной , противоположным понятием является понятие стационарной системы.

Пример нестационарных систем – это системы, где процессы, например, старения являются на данном интервале времени существенными.

Если вход и выход системы измеряется или изменяется во времени дискретно, через шаг, то система называется дискретной . Противоположным понятием является понятие непрерывной системы. Например: ЭВМ, электронные часы, электросчетчик – дискретные системы; песочные часы, солнечные часы, нагревательные приборы и т.д. – непрерывные системы.

Рис. 2.3 Классификация систем по их свойствам.

(Стрелки указывают возможный набор свойств системы)

В последнее время стали различать так называемые "жесткие" и «мягкие» системы, в основном, по используемым критериям рассмотрения.

Исследование «жестких» систем обычно опирается на категории: «проектирование», «оптимизация», «реализация», «функция цели» и другие. Для «мягких» систем используются чаще категории: «возможность», «желательность», «адаптируемость», «здравый смысл», «рациональность» и другие. Методы также различны: для «жестких» систем - методы оптимизации, теория вероятностей и математическая статистика, теория игр и другие; для «мягких» систем - многокритериальная оптимизация и принятие решений (часто в условиях неопределенности), метод Дельфи, теория катастроф, нечеткие множества и нечеткая логика, эвристическое программирование и др.

Для «переноса» знаний широко используются инварианты систем и изоморфизм систем. Важно при таком переносе не нарушать свойство эмерджентности системы.

Контрольные вопросы

1. Как классифицируются системы?

2. Какая система называется большой? сложной?

3. Чем определяется вычислительная (структурная, динамическая) сложность системы? Приведите примеры таких систем.


Тема 3

«Закономерности систем»

Рассматриваются общесистемные закономерности

Закономерности систем (в более полной формулировке – закономерности функционирования и развития систем) – общесистемные закономерности, характеризующие принципиальные особенности построения, функционирования и развития сложны систем.

Если закон абсолютен и не допускает никаких исключений, то закономерность менее категорична.

Закономерностью называют часто наблюдаемое, типичное свойство (связь или зависимость), присущее объектам и процессам, которое устанавливается опытом.

Для нас наибольший интерес представляет общесистемная закономерность.

Общесистемные закономерности - это закономерности, характеризующие принципиальные особенности построения, функционирования и развития сложных систем.

Эти закономерности присущи любым системам, будь то экономическая, биологическая, общественная, техническая или другая система.

Такие закономерности Л. фон Берталанфи вначале называл системными параметрами или принципами, а А.Холл – макроскопическими закономерностями.

Одну из первых классификаций закономерностей предложил В. Г. Афанасьев. Он разделил закономерности на 4 группы:

1. Закономерности взаимодействия части и целого: целостность или эмерджентность, аддитивность, прогрессирующая систематизация, прогрессирующая факторизация, интегративность.

2. Закономерности иерархической упорядоченности: коммуникативность, иерархичность.

3. Закономерности осуществимости систем: закон «необходимого разнообразия» У. Эшби, эквифинальность, закономерность потенциальной эффективности Б. С. Флейшмана.

4. Закономерности развития систем: историчность, самоорганизация.

Использование закономерностей построения, функционирования и развития систем помогает уточнить представление об изучаемом или проектируемом объекте, позволяет разрабатывать рекомендации по совершенствованию организационных систем, методик системного анализа.

Открытая система в теории систем - система, которая непрерывно взаимодействует с её средой. Взаимодействие может принять форму информации, энергии, или материальных преобразований на границе с системой, в зависимости от дисциплины, которая определяет понятие. Открытая система имеет свойство приспосабливаться к изменениям внешней среды. Примерами открытых систем могут служить организматические системы (живые организмы) и социальные системы (организации).

Открытая система противопоставляется понятию изолированной (закрытой) системы, которая не обменивается энергией, веществом, или информацией с окружающей средой.

Закрытые системы относительно независимы от внешней среды. Примерами закрытых систем могут служить автономные механизмы, например пылевлагонепроницаемые и противоударные часы. Открытые системы характеризуются взаимодействием с внешней средой. Такая система зависит от энергии, материалов и информации, поступающей извне.

Существует ряд подходов к разделению систем по сложности. Очень часто сложными системами называют системы, которые нельзя корректно описать математически, либо потому, что в системе имеется очень большое число элементов, неизвестным образом связанных друг с другом, либо неизвестна природа явлений, протекающих в системе.

Можно рассматривать сложность систем в двух аспектах: структурную сложность и сложность поведения.

При разработке сложных систем возникают проблемы, относящиеся не только к свойствам их составляющих элементов и подсистем, но также к закономерностям функционирования системы в целом. При этом появляется широкий круг специфических задач, таких, как определение общей структуры системы; организация взаимодействия между элементами и подсистемами; учет влияния внешней среды; выбор оптимальных режимов функционирования системы; оптимальное управление системой и др.

  1. Классификация систем по степени организованности

Хорошо организованные системы. Представить анализируемый объект или процесс в виде «хорошо организованной системы» означает определить элементы системы, их взаимосвязь, правила объединения в более крупные компоненты, т. е. определить связи между всеми компонентами и целями системы, с точки зрения которых рассматривается объект или ради достижения которых создается система. Проблемная ситуация может быть описана в виде математического выражения, связывающего цель со средствами, т. е. в виде критерия эффективности, критерия функционирования системы, который может быть представлен сложным уравнением или системой уравнений. Решение задачи при представлении ее в виде хорошо организованной системы осуществляется аналитическими методами формализованного представления системы.

Примеры хорошо организованных систем: солнечная система, описывающая наиболее существенные закономерности движения планет вокруг Солнца; отображение атома в виде планетарной системы, состоящей из ядра и электронов; описание работы сложного электронного устройства с помощью системы уравнений, учитывающей особенности условий его работы (наличие шумов, нестабильности источников питания и т. п.).

Для отображения объекта в виде хорошо организованной системы необходимо выделять существенные и не учитывать относительно несущественные для данной цели рассмотрения компоненты: например, при рассмотрении солнечной системы не учитывать метеориты, астероиды и другие мелкие по сравнению с планетами элементы межпланетного пространства.

Описание объекта в виде хорошо организованной системы применяется в тех случаях, когда можно предложить детерминированное описание и экспериментально доказать правомерность его применения, адекватность модели реальному процессу. Попытки применить класс хорошо организованных систем для представления сложных многокомпонентных объектов или многокритериальных задач плохо удаются: они требуют недопустимо больших затрат времени, практически нереализуемы и неадекватны применяемым моделям.

Плохо организованные системы. При представлении объекта в виде «плохо организованной или диффузной системы» не ставится задача определить все учитываемые компоненты, их свойства и связи между ними и целями системы. Система характеризуется некоторым набором макропараметров и закономерностями, которые находятся на основе исследования не всего объекта или класса явлений, а на основе определенней с помощью некоторых правил выборки компонентов, характеризующих исследуемый объект или процесс. На основе такого выборочного исследования получают характеристики или закономерности (статистические, экономические) и распространяют их на всю систему в целом. При этом делаются соответствующие оговорки. Например, при получении статистических закономерностей их распространяют на поведение всей системы с некоторой доверительной вероятностью.

Подход к отображению объектов в виде диффузных систем широко применяется при: описании систем массового обслуживания, определении численности штатов на предприятиях и учреждениях, исследовании документальных потоков информации в системах управления и т. д.

Самоорганизующиеся системы. Отображение объекта в виде самоорганизующейся системы - это подход, позволяющий исследовать наименее изученные объекты и процессы. Самоорганизующиеся системы обладают признаками диффузных систем: стохастичностью поведения, нестационарностью отдельных параметров и процессов. К этому добавляются такие признаки, как непредсказуемость поведения; способность адаптироваться к изменяющимся условиям среды, изменять структуру при взаимодействии системы со средой, сохраняя при этом свойства целостности; способность формировать возможные варианты поведения и выбирать из них наилучший и др. Иногда этот класс разбивают на подклассы, выделяя адаптивные или самоприспосабливающиеся системы, самовосстанавливающиеся, самовоспроизводящиеся и другие подклассы, соответствующие различным свойствам развивающихся систем.

Примеры: биологические организации, коллективное поведение людей, организация управления на уровне предприятия, отрасли, государства в целом, т. е. в тех системах, где обязательно имеется человеческий фактор.

При применении отображения объекта в виде самоорганизующейся системы задачи определения целей и выбора средств, как правило, разделяются. При этом задача выбора целей может быть, в свою очередь, описана в виде самоорганизующейся системы, т. е. структура функциональной части АСУ, структура целей, плана может разбиваться так же, как и структура обеспечивающей части АСУ (комплекс технических средств АСУ) или организационная структура системы управления.

Большинство примеров применения системного анализа основано на представлении объектов в виде самоорганизующихся систем.

В теории систем признак степени организованности системы напрямую пересекается с признаком ее сложности структуры и поведения. Поэтому понятия сложности и организованности могут дополнять друг друга, а могут выступать самостоятельно при характеристике отдельных проявлений системы. Как правило, по признаку степени организованности системы классифицируют на «хорошо организованные» системы и «плохо организованные» системы.

Под определением «хорошо организованные» системы понимают такие системы, при анализе которых имеется возможность определения ее элементов и компонентов, взаимосвязей между ними, правил объединения элементов в более крупные компоненты. При этом возможно установить цели системы и определить эффективность их достижения при функционировании системы.

В данном случае проблемная ситуация может быть описана в виде математического выражения, связывающего цель со сред­ствами, т. е. в виде критерия эффективности, критерия функци­онирования системы, который может быть представлен сложным уравнением или системой уравнений. Решение задачи при пред­ставлении ее в виде «хорошо организованной» системы осуществ­ляется аналитическими методами формализованного представле­ния системы.

Таким образом, можно говорить о равнозначности «хорошо организованных» систем и простых систем.

Следует отметить, что для отображения объекта в виде «хорошо организованной» системы необходимо выделять только существенные и не учитывать относительно несущественные для данной цели рассмотрения отдельные элементы, компоненты и их связи.

Например, солнечную систему можно представить как «хорошо организованную» систему при описании наиболее существенных закономерностей движения планет вокруг Солнца без учета метеоритов, астероидов и других мелких по сравнению с планетами элементов межпланетного пространства.

В качестве «хорошо организованной» системы можно привести техническое устройство компьютера (без учета возможностей отказа его отдельных элементов и узлов или каких-либо случайных помех, поступающих по цепям питания).

Таким образом, описание объекта в виде «хорошо организованной» системы применяется в тех случаях, когда можно предложить детермини­рованное описание и экспериментально доказать правомерность его применения, адекватность модели реальному процессу.

«Плохо организованные» системы, в отличие от вышерассмотренных, в общем, соответствуют «сложным» системам, так как при их анализе не всегда удается определить элементы и взаимосвязи между ними, а также выяснить четкие цели системы и методы оценки эффективности их функционирования.

В случае представления объекта в виде «плохо организованной» (или диффузной) системы не ста­вится задача определить все учитываемые элементы, компоненты, их свой­ства и связи между ними и целями системы. Система харак­теризуется некоторым набором макропараметров и теми закономер­ностями, которые определяются на основе исследования не всего объекта или целого класса явлений, а только отдельной его части – выборки, полученной с помо­щью некоторых правил выборки. На основе такого выборочного исследования получают характеристики или закономерности (статистические, экономические) и распространяют их на всю систему в целом. При этом делаются соответствующие оговорки. Например, при получении статистических закономерностей их распространяют на поведение всей системы с некоторой довери­тельной вероятностью.

Подход к отображению объектов в виде диффузных систем широко применяется при описании систем массового обслужива­ния (например, в телефонных сетях и т. п.), информационных потоков в информационных системах, описании ресурсных задач отраслевого характера и т. д.