Эффективный генератор для ветряка. Все про генератор электроэнергии: рыночный ассортимент и самодельные варианты. Последняя деталь устройства - станина. Как сделать

Уставшие от шума и смога мегаполисов горожане все чаще покидают тесные городские квартиры и переселяются в просторные загородные коттеджи поближе к лесу, речке, чистому воздуху и тут оказывается, что без электричества современная жизнь немыслима. Мы уже не можем обойтись без холодильников, кондиционеров, компьютеров, стиральных машин, зарядных устройств для сотовых телефонов и прочей бытовой техники, но мощность старых линий централизованного электроснабжения не всегда соответствует возросшей нагрузке, а нередко к участку электричество вообще еще не подведено. Чтобы жизнь загородного дома не замирала даже на мгновение, еще при его проектировании рачительные домовладельцы предусматривают автономный бензиновый, дизельный, газовый генератор электричества либо иной независимый источник электроэнергии. Статья расскажет, в каких случаях стоит выбирать тот или иной генератор электроэнергии и поможет ли самодельный генератор электроэнергии существенно сэкономить на энергоносителях.

Виды автономных генераторов энергии

Как бы далеко от цивилизации не находился загородный дом или дача, электричество позволит создать в нем самые современные атрибуты комфорта: бесперебойное водоснабжение и работу бытовых приборов, централизованное отопление, связь с внешним миром. А в черте города электрическая генераторная установка в доме избавит от таких неприятностей, как отключение электроэнергии во время техногенных аварий или природных катаклизмов.

Таким образом, автономный генератор электроэнергии - это механизм, преобразующий механическую, тепловую или любую иную энергию в электрическую. Все электрогенераторы состоят из установленных на одной раме двигателя, сжигающего топливо, и генератора, которому двигатель передает вращающий момент через механическую передачу. Электрогенераторные установки работают с высоким, близким к 95%, коэффициентом полезного действия, производят электрическую энергию сжиганием топлива и передачей генератору полученной механической энергии, а различаются по виду двигателя и типу производимого электрического тока.

Автономный стационарный генератор электроэнергии

В зависимости от типа производимого тока электрогенераторы бывают:

  • однофазные с выходным напряжением 220 вольт и частотой 50 герц;
  • трехфазные, которым соответствует напряжение 380 вольт при частоте 50 герц.

Эти исходные параметры электроснабжения сети способны обеспечить бесперебойную работу всех видов бытовых электроприборов и электроинструментов.

В зависимости от вида двигателя и используемого исходного вида топлива или источника энергии, независимые электрогенератор может быть:

  • бензиновый;
  • дизельный;
  • газовый;
  • работающий на альтернативных источниках энергии: солнца, ветра, воды;
  • бестопливный генератор электроэнергии.

Промышленные генераторы для дома

Бензиновые электрогенераторы широко используются для аварийного обеспечения электричеством дач, загородных домов и коттеджей в случаях отключения стационарного электроснабжения, а также для локального освещения открытых придомовых, автомобильных или торговых площадок. В качестве самостоятельных постоянных источников электропитания бензиновые генераторные установки почти не используются, так как их номинальная мощность редко превышает 20 кВт.

Автономные бензиновые электрогенераторы работают, в основном, на бензине марки АИ-92, в некоторых случаях можно использовать топливо марок АИ-76 или АИ-92 с добавлением масла. Выпускаются бензиновые генераторы электричества в следующем исполнении:

  • стационарные;
  • передвижные;
  • переносные.

Переносной бензиновый генератор электричества

Импортные бензиновые генераторные установки адаптированы к отечественным маркам топлива и наряду с отечественными используются для запуска и обеспечения стабильной работы двигателей в экстремальных условиях низких температур. В зависимости от потребностей можно подобрать бензиновый электрогенератор со стартерным или ручным запуском, с увеличенным или стандартным топливным баком, а также в открытом исполнении либо в звукопоглощающем кожухе.

Дизельный

Бытовой автономный дизельный электрогенератор благодаря широкому диапазону мощности от 2 кВт до 3 МВт может использоваться как в качестве резервного, так и в качестве основного источника электропитания загородного дома, дачи или любого другого объекта. Выпускаются дизельные электрогенераторы в следующем исполнении:

  • стационарные;
  • передвижные;
  • открытые;
  • в контейнере;
  • в шумозащитном кожухе.

Дизельные электрогенераторные установки, в равной степени отечественные и импортные, адаптированы к к отечественным и европейским стандартам дизельного топлива, а к их преимуществам можно отнести:

  • низкий расход топлива;
  • низкий уровень шума;
  • незначительный выброс вредных продуктов сгорания.

Дизельный электрогенератор — оптимальный вариант, идеально справляющийся с энергоснабжением частного дома

Современные дизельные электрогенераторы оснащены устройствами видеонаблюдения, контроля и управления процессом генерации электрической энергии, показателями качества электрического тока на выходе, возможностью синхронизации работы нескольких генераторов в сети, устройствами для их автоматического пуска и остановки. Сегодня дизельные электрогенераторы остаются наиболее популярными устройствами для бесперебойного обеспечения электроэнергией жилых индивидуальных домов и небольших производств.

Газовый

В газогенераторных установках в качестве топлива используется любой природный, промышленный, попутный газ, а также балонная сжиженная газовая смесь пропан-бутан. Широкий диапазон паспортной мощности газовых генераторных устройств от 20 кВт до 2 МВт обусловливает и широчайший спектр их применения в качестве источников аварийного и постоянного электроснабжения жилых загородных домов, торговых, производственных и любых других объектов.

Для обеспечения безаварийной работы газогенераторной установки еще на стадии проектирования необходимо обеспечить принудительную вентиляцию и систему отвода отработанных газов из помещения, где установка будет размещена.

Для обеспечения безаварийной работы газогенераторной установки необходимо обеспечить принудительную вентиляцию и систему отвода отработанных газов из помещения

По сравнению с бензиновым и дизельным аналогами газогенераторная установка имеет следующие преимущества:

  • невысокая цена и более высокая экологичность газа в качестве топлива;
  • повышенный моторесурс: при сгорании газа не образуются твердые продукты сгорания, приводящие к быстрому износу деталей двигателя;
  • долговечность электрогенератора: газ не вызывает коррозии металлических деталей устройства.

Благодаря перечисленным преимуществам, а также возможности адаптации к газу бензинового двигателя, газ пока остается самым эффективным видом топлива для автономных электрогенераторов. При равной мощности эффективность газогенераторной установки вдвое выше по сравнению с бензиновым и дизельным аналогами даже при использовании баллонного сжиженного газа, а при подключении к магистральному газоснабжению этот показатель увеличивается в 15-17 раз.

Генераторы электричества своими руками

Стремясь жить в гармонии с природой и сэкономить на постоянно растущих в цене энергоносителях, все больше домовладельцев пытаются создать генератор электроэнергии своими руками, используя многолетний опыт ученых и современные инновационные технологии. Можно скептически относиться к солнечным батареям, ветровым генераторам электричества, приватным мини-гидроэлектростанциям и не умирающей надежде человека изобрести если не вечный двигатель, то как минимум автономный бестопливный генератор электричества, но перечисленные устройства позволяют если не полностью удовлетворить потребность дома в электроэнергии, то прилично сэкономить.

Самодельный ветрогенератор

На просторах СНГ электрогенераторы-ветряки пока не получили должного распространения, а в вот в Дании они стали важнейшим фигурантом государственной программы энергосбережения и обеспечения станы электроэнергией.

Самодельный ветрогенератор электричества

Создать такой асинхронный стационарный генератор электричества своими руками не сложно, а в ветреных приморских или горных районах он вполне может покрыть потребность в электроэнергии небольшого частного дома. Принцип работы ветрового генератора построен на том, что двигатель работает на энергии ветра и запускает генератор, а полученная от него электроэнергия затем аккумулируется в специальных батареях и распределяется затем по назначению.

Видео: как сделать ветряной генератор

Эта разновидность генераторов электроэнергии все чаще используется в частных и многоквартирных домах солнечных южных городов, но солнечные батареи последних моделей уже способны обращать в электрическую энергию и непрямые солнечные лучи, а поэтому в ближайшем будущем энергия солнца придет и в дома северных городов. К недостаткам солнечных батарей можно отнести их высокую стоимость и наличие достаточно большой площади для установки, а поэтому используются они чаще только для подогрева воды.

Видео: постройка солнечной батареи

Видео: обзор самодельной солнечной электростанции 600 вт

Бестопливные генераторы для дома

Давнюю мечту человечества о вечном двигателе возможно удалось воплотить грузинскому изобретателю Капанадзе, создавшему первый бестопливный электрогенератор. Суть изобретения сводится к тому, что устройство запускается от любого источника электроэнергии, а, войдя в резонанс, превращается в своеобразный генератор статического электричества, извлекающий статическое электричество из окружающей среды посредством двух разнесенных заземлителей.

Несмотря на популярность идеи, промышленный образец бестопливного генератора пока не создан

Несмотря на огромную популярность идеи, промышленный образец бестопливного генератора пока не создан, а поэтому и эффективность его еще не оценена по достоинству. Автор изобретения уверен, что устройство в будущем будет использоваться в электромобилях, на электротранспорте, а также в качестве стационарного источника бытового электричества или же зарядов статического электричества для различных целей.

Схемы бестопливных генераторов электричества

Видео: бестопливный генератор своими руками

Размышляя, как сделать генератор электричества самостоятельно, не забывайте, что реализация любой понравившейся идеи получения электроэнергии нетрадиционным способом требует существенных первоначальных затрат. Правда, в случае удачи они могут окупиться за 3-5 лет, а возможно и раньше. Каждый должен сам для себя решить, купить ли генератор от известного производителя или создать его самостоятельно, но одно очевидно - дом должен быть обеспечен надежным источником электричества на случай любых неожиданных форс-мажорных обстоятельств.

Экология потребления.Наука и техника: Все большую популярность набирают Бестопливные генераторы, благодаря единственному, но очень важному преимуществу - отсутствие топлива

Генераторы электроэнергии с каждым годом приобретают все большую популярность не только у частных пользователей, но и в промышленности. Это напрямую связано не только с экономией затрачиваемых средств, но и со снижением добычи исчерпаемых полезных ископаемых.

Однако самым распространенным топливом для них по-прежнему остается бензин и дизельное топливо. Их продукты распада токсичны и вызывают загрязнение окружающей среды. Другое дело – бестопливные генераторы, которые обладают массой преимуществ перед своими топливными аналогами. Какими именно, узнаем далее.

Экономия полезных ископаемых для многих государств занимает ключевое место в экономике. Это успешно достигается за счет применения бестопливных генераторов, чьи принципы работы основываются на элементарных физических явлениях магнитного индукционного тока. Из наиболее успешных и эффективных на сегодняшний день используют следующее виды БГ:

  1. Ротор Дудышева – использует в основе магнитный ток, преобразуемый в электрический импульс.
  2. Магнитный двигатель Минато – имеет повышенный КПД – 100%, который достигается за счет усилителей мощности.
  3. Мотор Джонсона – имеет компенсатор, однако не эффективен в промышленности из-за низкой мощности.
  4. Генератор Адамса – самый популярный и эффективный магнитный двигатель, имеющий простую конструкцию, но высокий уровень КПД.
  5. Соленоидальный мотор Дудышева – имеет внешний магнитный ротор, который эффективен исключительно при использовании малых мощностей (при наличии «мокрой» конструкции).

Рассмотрим более подробно генераторы Адамса, которые наиболее часто встречаются на рынке альтернативных источников электричества.

Бестопливные генераторы работают по принципу выработки свободной энергии, преобразуя ее в индукционный ток. Этому физическому явлению посвятили свои исследования такие великие физики как Адамс (в честь которого и назван прибор) и Бедини. Эти агрегаты широко используются в качестве автономного энергоснабжения частных домов, а также:

  • в судоходстве;
  • в автомобилестроении;
  • фермерские и лесные угодья;
  • в самолетостроении и космонавтике.

Они эффективны там, где нет возможности подвоза топлива (дизеля, бензина, кокса, газа и др), а энергия природы (ветер, энергия Солнца, приливы и отливы) не настолько мощна, чтобы обеспечить электричеством на полную мощность.

Следует отделять понятия «вечный двигатель» и «энергогенератор памяти Адамса». Они схожи в работе, однако последние требуют постоянного технического обслуживания и периодического ремонта.

Их работа не зависит от факторов окружающей среды, поэтому бестопливный генератор фирмы Вега имеет следующие особенности и преимущества :

  • Могут использоваться вдали от любых источников электричества, а также на открытой и закрытой местностях, под воздействием атмосферных осадков.
  • Используют в качестве топлива кинетическую энергию.
  • Не имеют ограничений в работе и выработке энергии.
  • Не оказывает никаких негативных воздействий на здоровье человека и состояние окружающей среды.
  • Агрегат довольно компактный, при желании может быть собран самостоятельно.
  • Имеет срок службы не менее 20 лет.

Самое главное преимущество генераторов Вега – это отсутствие необходимости придания постоянного движения валу генератора . Это выполняется автоматически, путем преобразования кинетической и электромагнитной энергии в импульс.

Мотор работает исключительно на силе магнитного отталкивания от торцов электромагнитов. Для этого создается индукционное поле, которое позволяет продуцировать электрический импульс из магнитных колебаний.

Самая примитивная конструкция генераторов Адамса содержит следующие элементы:

  • Генератор – представляет собой герметично закрытую цилиндрическую емкость, внутри которой создается электромагнитное поле, за счет воздействия наружных катушек.
  • Конвертер-преобразователь напряжения – генерирует электричество, путем преобразования магнитных импульсов в переменный ток.
  • Аккумуляторные батареи – накапливают полученный заряд, позволяя использовать его в любое удобное время.

Главный конструктивный элемент – безредукторный генератор прямого вращения, который по своей структуре многополюсный. По его внешнему краю располагаются магниты, количество которых подбирается индивидуально, в зависимости от желаемой мощности. В процессе создания электрического поля генератор вращается вокруг своей оси, вырабатывая КПД не менее 91% . Генераторы хорошо соединяются друг с другом, что позволяет получать автономные электросети абсолютно без затрат. Это выгодно в том случае, когда мощность одного генератора не превышает 5 кВт, а для полноценного обеспечения электричеством требуется не менее 10 кВт.

Работа генератора под нагрузкой продемонстрирована на видео

Рассмотрим на примере создание генератора по типу Адамса, с получением небольшой мощности.

Итак, для работы понадобятся:

  • Магниты – их величина будет влиять на индукционное поле и вырабатываемую энергию, поэтому для пробы подойдут небольшие куски, желательно одинаковых размеров. Для полноценного генератора 15 штук будет вполне достаточно.

Магниты должны обязательно устанавливаться друг к другу одним полюсом – плюсом. В противном случае индукционное поле не создастся.

  • Медные провода.
  • Две катушки – ее можно как взять из уже готовых моторов, так и сделать самостоятельно, путем постепенного наматывания двух медных проводков, начиная снизу, и двигаясь вверх.
  • Листы стали, из которых будет изготовлен корпус (рамка).
  • Гвозди, болты и шайбы для закрепления мелких деталей.

Приступаем к работе . Первым делом нужно прикрепить линейный магнит к основанию катушки, путем высверливания отверстия и закрепления последнего болтами. На катушки наматываем провода (по 1,25 мм) с изоляцией. На металлическую рамку устанавливаем катушки таким образом, чтобы в торцах были зазоры, необходимые для кручения основного элемента. Собственно, агрегат готов к использованию. Правильно его собрали или нет – проверить очень просто. Для этого нужно крутить магниты рукой, приложив максимальную силу. Если на концах обмотки появилось напряжение (проверяем специальным прибором), значит агрегат полностью готов к эксплуатации.

Естественно, эта схема примитивная, но отображает суть задумки – создать генератор, который бы работал без топлива, используя силу магнитного тока. Для дома вряд ли подойдет такой генератор, а вот зарядить мобильный телефон вполне удастся.

На рынке производителей магнитных генераторов существенно выделяются три лидера:

  • «Вега»;
  • «Верано-Ко»;
  • «U-Polemag»;
  • «Энерджистем».

«Вега»

Производитель выпускает генераторы, работающие по принципу магнитной индукции, идею которой воплотил в реальность ученый физик Адамс. Стоимость определенных моделей полностью зависит от выходной мощности и габаритов агрегата. Цена начинается от 45 000 рублей. Среди явных преимуществ можно выделить следующие показатели:

  • высокий уровень экологичности;
  • бесшумная работа, позволяющая устанавливать генератор в жилой зоне;
  • компактность;
  • широкая линейка моделей от 1,5 до 10 кВт.

Продолжительность работы – не менее 20 лет. Эксплуатация и ремонт зависит от модели. Наиболее часто меняемые детали – аккумуляторы, которых хватает на 3-5 лет использования.

Работа генератора показана на видео

«Верано-Ко»

Украинский производитель, использующий для своих моделей высококачественные комплектующие. Базируется на выпуске генераторов альтернативного источника энергии, предназначенных не только для бытовых нужд, но и для генерирования энергии в промышленных масштабах. Принцип работы схож со всеми магнитными генераторами. Ценовой диапазон на модельный ряд варьируется от 50 000 до 180 000 рублей.

«U-Polemag»

Китайский производитель, лидер по количеству и разнообразию моделей. КПД – 93%, при этом потеря энергии менее 1%. Компактные габариты и небольшой вес идеальны для домашнего использования. Низкий уровень шумов и вибрации позволяет держать его в доме, не опасаясь за состояние здоровья. В комплектации имеются современные системы охлаждения, позволяющие увеличить продолжительность сроков эксплуатации до 15 лет. Отличается доступностью цен, которые в среднем колеблются от 31 000 до 85 000 рублей.

«Энерджистем»

Занимается выпуском бестопливных генераторов вертикального типа, которые работают от силы магнитного тока. Многие пользователи подобных агрегатов недовольны, высказывая несколько противоречивое мнение относительно качества и мощности производимых генераторов. Немного завышенная стоимость от 50 000 рублей и выше, делает эту фирму последней в рейтинге производителей БТГ.

Любые новые генераторы (а магнитные так и подавно) стоят немалых денег, поэтому перед его покупкой встает вопрос: как купить подешевле, но качественную модель? В последнее время модно покупать товары из Китая, которые славятся своей дешевизной и сравнительно терпимым качеством. Генераторы или комплектующие для них также можно заказать заграницей, однако риски при этом велики:

Как видим экономия вполне ложная. Другой вариант – покупка от производителя. Но и тут есть свои заморочки. Не зная всех тонкостей конструкции и особенностей работы агрегата, опытный продавец-маркетолог может «втюхать» такой генератор, который не будет отвечать требованиям. Не зря же говорится, если вооружен – значит защищен! Поэтому, перед тем как купить индукционный магнитный генератор, нужно:

На видео показан генератор Адамса фирмы Вега

На этот вопрос довольно сложно ответить, ведь, сколько людей, столько и мнений. Запомните главное – главная задача индукционного вертикального бестопливного генератора заключается в обеспечении электричеством той мощности, которая требуется. Если мощности будет недостаточно, генератор сможет выступать в качестве вспомогательного источника электричества. При выборе модели экономия не оправдается, поскольку дешевые агрегаты созданы из дешевых материалов, которые не прослужат верой и правдой десяток лет, как это должно быть.

Генератор, так же как и автомобиль, каждый выбирает под себя, учитывая свои личные предпочтения и требования. Модель, мощность, габариты и другие технические характеристики полностью зависят от того, где, как, когда и как долго будет использоваться бестопливный генератор. опубликовано

Россия в отношении ветроэнергетических ресурсов занимает двоякое положение. С одной стороны, благодаря огромной общей площади и обилию равнинных местностей ветра в целом много, и он большей частью ровный. С другой – наши ветры преимущественно низкопотенциальные, медленные, см. рис. С третьей, в мало обжитых местностях ветры буйные. Исходя из этого, задача завести на хозяйстве ветрогенератор вполне актуальна. Но, чтобы решить – покупать достаточно дорогое устройство, или сделать его своими руками, нужно как следует подумать, какой тип (а их очень много) для какой цели выбрать.

Основные понятия

  1. КИЭВ – коэффициент использования энергии ветра. В случае применения для расчета механистической модели плоского ветра (см. далее) он равен КПД ротора ветросиловой установки (ВСУ).
  2. КПД – сквозной КПД ВСУ, от набегающего ветра до клемм электрогенератора, или до количества накачанной в бак воды.
  3. Минимальная рабочая скорость ветра (МРС) – скорость его, при которой ветряк начинает давать ток в нагрузку.
  4. Максимально допустимая скорость ветра (МДС) – его скорость, при которой выработка энергии прекращается: автоматика или отключает генератор, или ставит ротор во флюгер, или складывает его и прячет, или ротор сам останавливается, или ВСУ просто разрушается.
  5. Стартовая скорость ветра (ССВ) – при такой его скорости ротор способен провернуться без нагрузки, раскрутиться и войти в рабочий режим, после чего можно включать генератор.
  6. Отрицательная стартовая скорость (ОСС) – это значит, что ВСУ (или ВЭУ – ветроэнергетическая установка, или ВЭА, ветроэнергетический агрегат) для запуска при любой скорости ветра требует обязательной раскрутки от постороннего источника энергии.
  7. Стартовый (начальный) момент – способность ротора, принудительно заторможенного в потоке воздуха, создавать вращающий момент на валу.
  8. Ветродвигатель (ВД) – часть ВСУ от ротора до вала генератора или насоса, или другого потребителя энергии.
  9. Роторный ветрогенератор – ВСУ, в которой энергия ветра преобразуется во вращательный момент на валу отбора мощности посредством вращения ротора в потоке воздуха.
  10. Диапазон рабочих скоростей ротора – разность между МДС и МРС при работе на номинальную нагрузку.
  11. Тихоходный ветряк – в нем линейная скорость частей ротора в потоке существенно не превосходит скорость ветра или ниже ее. Динамический напор потока непосредственно преобразуется в тягу лопасти.
  12. Быстроходный ветряк – линейная скорость лопастей существенно (до 20 и более раз) выше скорости ветра, и ротор образует свою собственную циркуляцию воздуха. Цикл преобразования энергии потока в тягу сложный.

Примечания:

  1. Тихоходные ВСУ, как правило, имеют КИЭВ ниже, чем быстроходные, но имеют стартовый момент, достаточный для раскрутки генератора без отключения нагрузки и нулевую ССВ, т.е. абсолютно самозапускающиеся и применимы при самых слабых ветрах.
  2. Тихоходность и быстроходность – понятия относительные. Бытовой ветряк на 300 об/мин может быть тихоходным, а мощные ВСУ типа EuroWind, из которых набирают поля ветроэлектростанций, ВЭС (см. рис.) и роторы которых делают порядка 10 об/мин – быстроходные, т.к. при таком их диаметре линейная скорость лопастей и их аэродинамика на большей части размаха – вполне «самолетные», см. далее.

Какой нужен генератор?

Электрический генератор для ветряка бытового назначения должен вырабатывать электроэнергию в широком диапазоне скоростей вращения и обладать способностью самозапуска без автоматики и внешних источников питания. В случае использования ВСУ с ОСС (ветряки с раскруткой), обладающих, как правило, высокими КИЭВ и КПД, он должен быть и обратимым, т.е. уметь работать и как двигатель. При мощностях до 5 кВт этому условию удовлетворяют электрические машины с постоянными магнитами на основе ниобия (супермагнитами); на стальных или ферритовых магнитах можно рассчитывать не более чем на 0,5-0,7 кВт.

Примечание: асинхронные генераторы переменного тока или коллекторные с ненамагниченным статором не годятся совершенно. При уменьшении силы ветра они «погаснут» задолго до того, как его скорость упадет до МРС, и потом сами не запустятся.

Отличное «сердце» ВСУ мощностью от 0,3 до 1-2 кВт получается из автогенератора переменного тока со встроенным выпрямителем; таких сейчас большинство. Во-первых, они держат выходное напряжение 11,6-14,7 В в довольно широком диапазоне скоростей без внешних электронных стабилизаторов. Во-вторых, кремниевые вентили открываются, когда напряжение на обмотке достигнет примерно 1,4 В, а до этого генератор «не видит» нагрузки. Для этого генератор нужно уже довольно прилично раскрутить.

В большинстве случаев автогенератор можно непосредственно, без зубчатой или ременной передачи, соединить с валом быстроходного ВД, подобрав обороты выбором количества лопастей, см. ниже. «Быстроходки» имеют малый или нулевой стартовый момент, но ротор и без отключения нагрузки успеет достаточно раскрутиться, прежде чем вентили откроются и генератор даст ток.

Выбор по ветру

Прежде чем решать, какой сделать ветрогенератор, определимся с местной аэрологией. В серо-зеленоватых (безветренных) областях ветровой карты хоть какой-то толк будет лишь от парусного ветродвигателя (и них далее поговорим). Если необходимо постоянное энергоснабжение, то придется добавить бустер (выпрямитель со стабилизатором напряжения), зарядное устройство, мощную аккумуляторную батарею, инвертор 12/24/36/48 В постоянки в 220/380 В 50 Гц переменного тока. Обойдется такое хозяйство никак не менее $20.000, и снять долговременную мощность более 3-4 кВт вряд ли получится. В общем, при непреклонном стремлении к альтернативной энергетике лучше поискать другой ее источник.

В желто-зеленых , слабоветренных местах, при потребности в электричестве до 2-3 кВт самому можно взяться за тихоходный вертикальный ветрогенератор . Их разработано несть числа, и есть конструкции, по КИЭВ и КПД почти не уступающие «лопастникам» промышленного изготовления.

Если же ВЭУ для дома предполагается купить, то лучше ориентироваться на ветряк с парусным ротором. Споров и них много, и в теории пока еще не все ясно, но работают. В РФ «парусники» выпускают в Таганроге на мощность 1-100 кВт.

В красных , ветреных, регионах выбор зависит от потребной мощности. В диапазоне 0,5-1,5 кВт оправданы самодельные «вертикалки»; 1,5-5 кВт – покупные «парусники». «Вертикалка» тоже может быть покупной, но обойдется дороже ВСУ горизонтальной схемы. И, наконец, если требуется ветряк мощностью 5 кВт и более, то выбирать нужно между горизонтальными покупными «лопастниками» или «парусниками».

Примечание: многие производители, особенно второго эшелона, предлагают комплекты деталей, из которых можно собрать ветрогенератор мощностью до 10 кВт самостоятельно. Обойдется такой набор на 20-50% дешевле готового с установкой. Но прежде покупки нужно внимательно изучить аэрологию предполагаемого места установки, а затем по спецификациям подобрать подходящие тип и модель.

О безопасности

Детали ветродвигателя бытового назначения в работе могут иметь линейную скорость, превосходящую 120 и даже 150 м/с, а кусочек любого твердого материала весом в 20 г, летящий со скоростью 100 м/с, при «удачном» попадании убивает здорового мужика наповал. Стальная, или из жесткого пластика, пластина толщиной 2 мм, движущаяся со скоростью 20 м/с, рассекает его же напополам.

Кроме того, большинство ветряков мощностью более 100 Вт довольно сильно шумят. Многие порождают колебания давления воздуха сверхнизкой (менее 16 Гц) частоты – инфразвуки. Инфразвуки неслышимы, но губительны для здоровья, а распространяются очень далеко.

Примечание: в конце 80-х в США был скандал – пришлось закрыть крупнейшую на тот момент в стране ВЭС. Индейцы из резервации в 200 км от поля ее ВСУ доказали в суде, что резко участившиеся у них после ввода ВЭС в эксплуатацию расстройства здоровья обусловлены ее инфразвуками.

В силу указанных выше причин установка ВСУ допускается на расстоянии не менее 5 их высот от ближайших жилых строений. Во дворах частных домовладений можно устанавливать ветряки промышленного изготовления, соответствующим образом сертифицированные. На крышах ставить ВСУ вообще нельзя – при их работе, даже у маломощных, возникают знакопеременные механические нагрузки, способные вызвать резонанс строительной конструкции и ее разрушение.

Примечание: высотой ВСУ считается наивысшая точка ометаемого диска (для лопастных роторов) или геомерической фигуры (для вертикальных ВСУ с ротором на древке). Если мачта ВСУ или ось ротора выступают вверх еще выше, высота считается по их топу – верхушке.

Ветер, аэродинамика, КИЭВ

Самодельный ветрогенератор подчиняется тем же законам природы, что и заводской, рассчитанный на компьютере. И самодельщику основы его работы нужно понимать очень хорошо – в его распоряжении чаще всего нет дорогих суперсовременных материалов и технологического оборудования. Аэродинамика же ВСУ ох как непроста…

Ветер и КИЭВ

Для расчета серийных заводских ВСУ используется т. наз. плоская механистическая модель ветра. В ее основе следующие предположения:

  • Скорость и направление ветра постоянны в пределах эффективной поверхности ротора.
  • Воздух – сплошная среда.
  • Эффективная поверхность ротора равна ометаемой площади.
  • Энергия воздушного потока – чисто кинетическая.

При таких условиях максимальную энергию единицы объема воздуха вычисляют по школьной формуле, полагая плотность воздуха при нормальных условиях 1,29 кг*куб. м. При скорости ветра 10 м/с один куб воздуха несет в себе 65 Дж, и с одного квадрата эффективной поверхности ротора можно, при 100% КПД всей ВСУ, снять 650 Вт. Это весьма упрощенный подход – все знают, что ветер идеально ровным не бывает. Но на это приходится идти, чтобы обеспечить повторяемость изделий – обычное в технике дело.

Плоскую модель игнорировать не следует, она дает четкий минимум доступной энергии ветра. Но воздух, во-первых, сжимаем, во-вторых, очень текуч (динамическая вязкость всего 17,2 мкПа*с). Это значит, поток может обтекать ометаемую площадь, уменьшая эффективную поверхность и КИЭВ, что чаще всего и наблюдается. Но в принципе возможна и обратная ситуация: ветер стекается к ротору и площадь эффективной поверхности тогда окажется больше ометаемой, а КИЭВ – больше 1 относительно его же для плоского ветра.

Приведем два примера. Первый – прогулочная, довольно тяжеловесная, яхта может идти не только против ветра, но и быстрее его. Ветер имеется в виду внешний; вымпельный ветер все равно должен быть быстрее, иначе как он судно потянет?

Второй – классика авиационной истории. На испытаниях МИГ-19 оказалось, что перехватчик, который был на тонну тяжелее фронтового истребителя, по скорости разгоняется быстрее. С теми же движками в том же планере.

Теоретики не знали, что и думать, и всерьез засомневались в законе сохранения энергии. В конце концов оказалось – дело в выступающем из воздухозаборника конусе обтекателя РЛС. От его носка к обечайке возникало уплотнение воздуха, как бы сгребавшее его со сторон к компрессорам двигателей. С тех пор ударные волны прочно вошли в теорию как полезные, и фантастические летные данные современных самолетов в немалой степени обусловлены их умелым использованием.

Аэродинамика

Развитие аэродинамики принято делить на две эпохи – до Н. Г. Жуковского и после. Его доклад «О присоединенных вихрях» от 15 ноября 1905 г. стал началом новой эры в авиации.

До Жуковского летали на поставленных плашмя парусах: полагалось, что частицы набегающего потока отдают весь свой импульс передней кромке крыла. Это позволяло сразу избавиться от векторной величины – момента количества движения – порождавшей зубодробительную и чаще всего неаналитическую математику, перейти к куда более удобным скалярным чисто энергетическим соотношениям, и получить в итоге расчетное поле давления на несущую плоскость, более-менее похожее на настоящее.

Такой механистический подход позволил создать аппараты, способные худо-бедно подняться в воздух и совершить перелет из одного места в другое, не обязательно грохнувшись на землю где-то по пути. Но стремление увеличить скорость, грузоподъемность и другие летные качества все больше выявляло несовершенство первоначальной аэродинамической теории.

Идея Жуковского была такова: вдоль верхней и нижней поверхностей крыла воздух проходит разный путь. Из условия непрерывности среды (пузыри вакуума сами по себе в воздухе не образуются) следует, что скорости верхнего и нижнего потоков, сходящих с задней кромки, должны отличаться. Вследствие пусть малой, но конечной вязкости воздуха там из-за разности скоростей должен образоваться вихрь.

Вихрь вращается, а закон сохранения количества движения, столь же непреложный, как и закон сохранения энергии, справедлив и для векторных величин, т.е. должен учитывать и направление движения. Поэтому тут же, на задней кромке, должен сформироваться противоположно вращающийся вихрь с таким же вращательным моментом. За счет чего? За счет энергии, вырабатываемой двигателем.

Для практики авиации это означало революцию: выбрав соответствующий профиль крыла, можно было присоединенный вихрь пустить вокруг крыла в виде циркуляции Г, увеличивающей его подъемную силу. Т.е., затратив часть, а для больших скоростей и нагрузок на крыло – большую часть, мощности мотора, можно создать вокруг аппарата воздушный поток, позволяющий добиться лучших летных качеств.

Это делало авиацию авиацией, а не частью воздухоплавания: теперь летательный аппарат мог сам создавать себе нужную для полета среду и не быть более игрушкой воздушных потоков. Нужен только двигатель помощнее, и еще и еще мощнее…

Снова КИЭВ

Но у ветряка мотора нет. Он, наоборот, должен отбирать энергию у ветра и давать ее потребителям. И здесь выходит – ноги вытащил, хвост увяз. Пустили слишком мало энергии ветра на собственную циркуляцию ротора – она будет слабой, тяга лопастей – малой, а КИЭВ и мощность – низкими. Отдадим на циркуляцию много – ротор при слабом ветре будет на холостом ходу крутиться как бешеный, но потребителям опять достается мало: чуть дали нагрузку, ротор затормозился, ветер сдул циркуляцию, и ротор стал.

Закон сохранения энергии «золотую середину» дает как раз посерединке: 50% энергии даем в нагрузку, а на остальные 50% подкручиваем поток до оптимума. Практика подтверждает предположения: если КПД хорошего тянущего пропеллера составляет 75-80%, то КИЭВ так же тщательно рассчитанного и продутого в аэродинамической трубе лопастного ротора доходит до 38-40%, т.е. до половины от того, чего можно добиться при избытке энергии.

Современность

Ныне аэродинамика, вооруженная современной математикой и компьютерами, все более уходит от неизбежно что-то да упрощающих моделей к точному описанию поведения реального тела в реальном потоке. И тут, кроме генеральной линии – мощность, мощность, и еще раз мощность! – обнаруживаются пути побочные, но многообещающие как раз при ограниченном количестве поступающей в систему энергии.

Известный авиатор-альтернативщик Пол Маккриди еще в 80-х создал самолет, с двумя моторчиками от бензопилы мощностью в 16 л.с. показавший 360 км/ч. Причем шасси его было трехопорным неубирающимся, а колеса – без обтекателей. Ни один из аппаратов Маккриди не вышел на линию и не встал на боевое дежурство, но два – один с поршневыми моторами и пропеллерами, а другой реактивный – впервые в истории облетели вокруг земного шара без посадки на одной заправке.

Парусов, породивших изначальное крыло, развитие теории тоже коснулось весьма существенно. «Живая» аэродинамика позволила яхтам при ветре в 8 узл. встать на подводные крылья (см. рис.); чтобы разогнать такую громадину до нужной скорости гребным винтом, требуется двигатель не менее 100 л.с. Гоночные катамараны при таком же ветре ходят со скоростью около 30 узл. (55 км/ч).

Есть и находки совершенно нетривиальные. Любители самого редкого и экстемального спорта – бейсджампинга – надев апециальный костюм-крыло, вингсьют, летают без мотора, маневрируя, на скорости более 200 км/ч (рис. справа), а затем плавно приземляются в заранее выбранном месте. В какой сказке люди летают сами по себе?

Разрешились и многие загадки природы; в частности – полет жука. По классической аэродинамике, он летать не способен. Точно так же, как и родоначальник «стелсов» F-117 с его крылом ромбовидного профиля тоже не способен подняться в воздух. А МИГ-29 и Су-27, которые некоторое время могут лететь хвостом вперед, и вовсе ни в какие представления не укладываются.

И почему тогда, занимаясь ветродвигателями, не забавой и не орудием уничтожения себе подобных, а источником жизненно важного ресурса, нужно плясать непременно от теории слабых потоков с ее моделью плоского ветра? Неужели не найдется возможности продвинуться дальше?

Чего ожидать от классики?

Однако от классики отказываться ни в коем случае не следует. Она дает основу, не оперевшись на которую нельзя подняться выше. Точно так же, как теория множеств не отменяет таблицу умножения, а от квантовой хромодинамики яблоки с деревьев вверх не улетят.

Итак, на что можно рассчитывать при классическом подходе? Посмотрим на рисунок. Слева – типы роторов; они изображены условно. 1 – вертикальный карусельный, 2 – вертикальный ортогональный (ветряная турбина); 2-5 – лопастные роторы с разным количеством лопастей с оптимизированными профилями.

Справа по горизонтальной оси отложена относительная скорость ротора, т.е., отношение линейной скорости лопасти к скорости ветра. По вертикальной вверх – КИЭВ. А вниз – опять же относительный крутящий момент. Единичным (100%) крутящим моментом считается такой, который создает насильно заторможенный в потоке ротор со 100% КИЭВ, т.е. когда вся энергия потока преобразуется во вращающее усилие.

Такой подход позволяет делать далеко идущие выводы. Скажем, количество лопастей нужно выбирать не только и не столько по желательной скорости вращения: 3- и 4-лопастники сразу много теряют по КИЭВ и вращательному моменту по сравнению с хорошо работающими примерно в том же диапазоне скорстей 2- и 6-лопастниками. А внешне похожие карусель и ортогонал обладают принципиально разными свойствами.

В целом же предпочтение следует отдавать лопастным роторам, кроме случаев, когда требуются предельная дешевизна, простота, необслуживаемый самозапуск без автоматики и невозможен подъем на мачту.

Примечание: о парусных роторах поговорим особо – они, похоже, в классику не укладываются.

Вертикалки

ВСУ с вертикальной осью вращения имеют неоспоримое для быта преимущество: их узлы, требующие обслуживания, сосредоточены внизу и не нужен подъем наверх. Там остается, и то не всегда, упорно-опорный самоустанавливающийся подшипник, но он прочен и долговечен. Поэтому, проектируя простой ветрогенератор, отбор вариантов нужно начинать с вертикалок. Основные их типы представлены на рис.

ВС

На первой позиции – самый простейший, чаще всего называемый ротором Савониуса. На самом деле его изобрели в 1924 г. в СССР Я. А. и А. А. Воронины, а финский промышленник Сигурд Савониус бессовестно присвоил себе изобретение, проигнорировав советское авторское свидетельство, и начал серийный выпуск. Но внедрение в судьбе изобретения значит очень много, поэтому мы, чтобы не ворошить прошлое и не тревожить прах усопших, назовем этот ветряк ротором Ворониных-Савониуса, или для краткости, ВС.

ВС для самодельщика всем хорош, кроме «паровозного» КИЭВ в 10-18%. Однако в СССР над ним работали много, и наработки есть. Ниже мы рассмотрим усовершенствованную конструкцию, не намного более сложную, но по КИЭВ дающую фору лопастникам.

Примечание: двухлопастный ВС не крутится, а дергается рывками; 4-лопастный лишь немного плавнее, но много теряет в КИЭВ. Для улучшения 4-«корытные» чаще всего разносят на два этажа – пара лопастей внизу, а другая пара, повернутая на 90 градусов по горизонтали, над ними. КИЭВ сохраняется, и боковые нагрузки на механику слабеют, но изгибные несколько возрастают, и при ветре более 25 м/с у такой ВСУ на древке, т.е. без растянутого вантами подшипника над ротором, «срывает башню».

Дарье

Следующий – ротор Дарье; КИЭВ – до 20%. Он еще проще: лопасти – из простой упругой ленты безо всякого профиля. Теория ротора Дарье еще недостаточно разработана. Ясно только, что начинает он раскручиваться за счет разности аэродинамического сопротивления горба и кармана ленты, а затем становится вроде как быстроходным, образуя собственную циркуляцию.

Вращательный момент мал, а в стартовых положениях ротора параллельно и перпендикулярно ветру вообще отсутствует, поэтому самораскрутка возможна только при нечетном количестве лопастей (крыльев?) В любом случае на время раскрутки нагрузку от генератора нужно отключать.

Есть у ротора Дарье еще два нехороших качества. Во-первых, при вращении вектор тяги лопасти описывает полный оборот относительно ее аэродинамического фокуса, и не плавно, а рывками. Поэтому ротор Дарье быстро разбивает свою механику даже при ровном ветре.

Во-вторых, Дарье не то что шумит, а вопит и визжит, вплоть до того, что лента рвется. Происходит это вследствие ее вибрации. И чем больше лопастей, тем сильнее рев. Так что Дарье если и делают, то двухлопастными, из дорогих высокопрочных звукопоглощающих материалов (карбона, майлара), а для раскрутки посередине мачты-древка приспосабливают небольшой ВС.

Ортогонал

На поз. 3 – ортогональный вертикальный ротор с профилированными лопастями. Ортогональный потому, что крылья торчат вертикально. Переход от ВС к ортогоналу иллюстрирует рис. слева.

Угол установки лопастей относительно касательной к окружности, касающейся аэродинамических фокусов крыльев, может быть как положительным (на рис.), так и отрицательным, сообразно силе ветра. Иногда лопасти делают поворотными и ставят на них флюгерки, автоматически держащие «альфу», но такие конструкции часто ломаются.

Центральное тело (голубое на рис.) позволяет довести КИЭВ почти до 50% В трехлопастном ортогонале оно должно в разрезе иметь форму треугольника со слегка выпуклыми сторонами и скругленными углами, а при большем количестве лопастей достаточно простого цилиндра. Но теория для ортогонала оптимальное количество лопастей дает однозначно: их должно быть ровно 3.

Ортогонал относится к быстроходным ветрякам с ОСС, т.е. обязательно требует раскрутки при вводе в эксплуатацию и после штиля. По ортогональной схеме выпускаются серийные необслуживаемые ВСУ мощностью до 20 кВт.

Геликоид

Геликоидный ротор, или ротор Горлова (поз. 4) – разновидность ортогонала, обеспечивающая равномерное вращение; ортогонал с прямыми крыльями «рвет» лишь немного слабее двухлопастного ВС. Изгиб лопастей по геликоиде позволяет избежать потерь КИЭВ из-за их кривизны. Хотя часть потока кривая лопасть и отбрасывает, не используя, но зато и загребает часть в зону наибольшей линейной скорости, компенсируя потери. Геликоиды используют реже прочих ветряков, т.к. они вследствие сложности изготовления оказываются дороже равных по качеству собратьев.

Бочка-загребушка

На 5 поз. – ротор типа ВС, окруженный направляющим аппаратом; его схема представлена на рис. справа. В промышленном исполнении встречается редко, т.к. дорогостоящий отвод земли не компенсирует прироста мощности, а материалоемкость и сложность производства велики. Но самодельщик, боящийся работы – уже не мастер, а потребитель, и, если нужно не более 0,5-1,5 кВт, то для него «бочка-загребушка» лакомый кусок:

  • Ротор такого типа абсолютно безопасен, бесшумен, не создает вибраций и может быть установлен где угодно, хоть на детской площадке.
  • Согнуть «корыта» из оцинковки и сварить каркас из труб – работа ерундовая.
  • Вращение – абсолютно равномерное, детали механики можно взять самые дешевые или из хлама.
  • Не боится ураганов – слишком сильный ветер не может протолкнуться в «бочку»; вокруг нее возникает обтекаемый вихревой кокон (мы с этим эффектом еще столкнемся).
  • А самое главное – поскольку поверхность «загребушки» в несколько раз больше таковой ротора внутри, КИЭВ может быть и сверхединичным, а вращательным момент уже при 3 м/с у «бочки» трехметрового диаметра такой, что генератору на 1 кВт с предельной нагрузкой, как говорится, лучше и не дергаться.

Видео: ветрогенератор Ленца

В 60-х в СССР Е. С. Бирюков запатентовал карусельную ВСУ с КИЭВ 46%. Немного позже В. Блинов добился от конструкции на том же принципе КИЭВ 58%, но данных о ее испытаниях нет. А натурные испытания ВСУ Бирюкова были проведены сотрудниками журнала «Изобретатель и рационализатор». Двухэтажный ротор диаметром 0,75 м и высотой 2 м при свежем ветре раскручивал на полную мощность асинхронный генератор 1,2 кВт и выдерживал без поломки 30 м/с. Чертежи ВСУ Бирюкова приведены на рис.

  1. ротор из кровельной оцинковки;
  2. самоустанавливающийся двухрядный шариковый подшипник;
  3. ванты – 5 мм стальной трос;
  4. ось-древко – стальная труба с толщиной стенок 1,5-2,5 мм;
  5. рычаги аэродинамического регулятора оборотов;
  6. лопасти регулятора оборотов – 3-4 мм фанера или листовой пластик;
  7. тяги регулятора оборотов;
  8. груз регулятора оборотов, его вес определяет частоту вращения;
  9. ведущий шкив – велосипедное колесо без шины с камерой;
  10. подпятник – упорно-опорный подшипник;
  11. ведомый шкив – штатный шкив генератора;
  12. генератор.

Бирюков на свою ВСУ получил сразу несколько авторских свидетельств. Во-первых, обратите внимание на разрез ротора. При разгоне он работает подобно ВС, создавая большой стартовый момент. По мере раскрутки во внешних карманах лопастей создается вихревая подушка. С точки зрения ветра, лопасти становятся профилированными, и ротор превращается в быстроходный ортогонал, причем виртуальный профиль меняется соответственно силе ветра.

Во-вторых, профилированный канал между лопастями в рабочем диапазоне скоростей работает как центральное тело. Если же ветер усиливается, то в нем также создается вихревая подушка, выходящая за пределы ротора. Возникает такой же вихревой кокон, как вокруг ВСУ с направляющим аппаратом. Энергия на его создание берется от ветра, и тому на поломку ветряка ее уже не хватает.

В-третьих, регулятор оборотов предназначен прежде всего для турбины. Он держит ее обороты оптимальными с точки зрения КИЭВ. А оптимум частоты вращения генератора обеспечивается выбором передаточного отношения механики.

Примечание: после публикаций в ИР за 1965 г. ВСУ Бирюкова канула в небытие. Ответа от инстанций автор так и не дождался. Судьба многих советских изобретений. Говорят, какой-то японец стал миллиардером, регулярно читая советские популярно-технические журналы и патентуя у себя все, заслуживающее внимания.

Лопастники

Как у сказано, по классике горизонтальный ветрогенератор с лопастным ротором – наилучший. Но, во-первых, ему нужен стабильный хотя бы средней силы ветер. Во-вторых, конструкция для самодельщика таит в себе немало подводных камней, из-за чего нередко плод долгих упорных трудов в лучшем случае освещает туалет, прихожую или крыльцо, а то и оказывается способен только раскрутить самого себя.

По схемам на рис. рассмотрим подробнее; позиции:

  • Фиг. А:
  1. лопасти ротора;
  2. генератор;
  3. станина генератора;
  4. защитный флюгер (ураганная лопата);
  5. токосъемник;
  6. шасси;
  7. поворотный узел;
  8. рабочий флюгер;
  9. мачта;
  10. хомут под ванты.
  • Фиг. Б, вид сверху:
  1. защитный флюгер;
  2. рабочий флюгер;
  3. регулятор натяжения пружины защитного флюгера.
  • Фиг. Г, токосъемник:
  1. коллектор с медными неразрезными кольцевыми шинами;
  2. подпружиненные меднографитовые щетки.

Примечание: ураганная защита для горизонтального лопастника диаметром более 1 м совершенно необходима, т.к. создать вокруг себя вихревой кокон он не способен. При меньших размерах можно добиться выносливости ротора до 30 м/с с лопастями из пропилена.

Итак, где нас ждут «спотыки»?

Лопасти

Рассчитывать добиться мощности на валу генератора более 150-200 Вт на лопастях любого размаха, вырезанных из толстостенной пластиковой трубы, как часто советуют – надежды беспросветного дилетанта. Лопасть из трубы (если только она не настолько толстая, что используется просто как заготовка) будет иметь сегментный профиль, т.е. его верхняя, или обе поверхности будут дугами окружности.

Сегментные профили пригодны для несжимаемой среды, скажем, для подводных крыльев или лопастей гребного винта. Для газов же нужна лопасть переменного профиля и шага, для примера см. рис.; размах – 2 м. Это будет сложное и трудоемкое изделие, требующее кропотливого расчета во всеоружии теории, продувок в трубе и натурных испытаний.

Генератор

При насадке ротора прямо на его вал штатный подшипник скоро разобьется – одинаковой нагрузки на все лопасти в ветряках не бывает. Нужен промежуточный вал со специальным опорным подшипником и механическая передача от него на генератор. Для больших ветряков опорный подшипник берут самоустанавливающийся двухрядный; в лучших моделях – трехъярусный, Фиг. Д на рис. выше. Такой позволяет валу ротора не только слегка изгибаться, но и немного смещаться из стороны в сторону или вверх-вниз.

Примечание: на разработку опорного подшипника для ВСУ типа EuroWind ушло около 30 лет.

Аварийный флюгер

Принцип его работы показывает Фиг. В. Ветер, усиливаясь, давит на лопату, пружина растягивается, ротор перекашивается, обороты его падают и в конце концов он становится параллельно потоку. Вроде бы все хорошо, но – гладко было на бумаге…

Попробуйте в ветреный день удержать за ручку параллельно ветру крышку от выварки или большой кастрюли. Только осторожно – вертлявая железяка может садануть по физиономbии так, что расквасит нос, рассечет губу, а то и выбьет глаз.

Плоский ветер бывает только в теоретических выкладках и, с достаточной для практики точностью, в аэродинамических трубах. Реально же ураган ветряки с ураганной лопатой корежит больше, чем вовсе беззащитные. Лучше все-таки менять исковерканные лопасти, чем делать заново все. В промышленных установках – другое дело. Там шаг лопастей, по каждой в отдельности, отслеживает и регулирует автоматика под управлением бортового компьютера. И делаются они из сверхпрочных композитов, а не из водопроводных труб.

Токосъемник

Это – регулярно обслуживаемый узел. Любой энергетик знает, что коллектор со щетками нужно чистить, смазывать, регулировать. А мачта – из водопроводной трубы. Не залезешь, раз в месяц-два придется весь ветряк валить на землю и потом опять поднимать. Сколько он протянет от такой «профилактики»?

Видео: лопастной ветрогенератор + солнечная панель для электроснабжения дачи

Мини и микро

Но с уменьшением размеров лопастника трудности падают по квадрату диаметра колеса. Изготовление горизонтальной лопастной ВСУ своими силами на мощность до 100 Вт уже возможно. Оптимальным будет 6-лопастный. При большем количестве лопастей диаметр ротора, рассчитанного на ту же мощность, будет меньше, но их окажется трудно прочно закрепить на ступице. Роторы о менее чем 6 лопастях можно не иметь в виду: 2-лопастнику на 100 Вт нужен ротор диаметром 6,34 м, а 4-лопастнику той же мощности – 4,5 м. Для 6-лопастного зависимость мощность – диаметр выражается следующим образом:

  • 10 Вт – 1,16 м.
  • 20 Вт – 1,64 м.
  • 30 Вт – 2 м.
  • 40 Вт – 2,32 м.
  • 50 Вт – 2,6 м.
  • 60 Вт – 2,84 м.
  • 70 Вт – 3,08 м.
  • 80 Вт – 3,28 м.
  • 90 Вт – 3,48 м.
  • 100 Вт – 3,68 м.
  • 300 Вт – 6,34 м.

Оптимальным будет рассчитывать на мощность 10-20 Вт. Во-первых, лопасть из пластика размахом более 0,8 м без дополнительных мер защиты не выдержит ветер более 20 м/с. Во-вторых, при размахе лопасти до тех же 0,8 м линейная скорость ее концов не превысит скорость ветра более чем втрое, и требования к профилировке с круткой снижаются на порядки; здесь уже вполне удовлетворительно будет работать «корытце» с сегментным профилем из трубы, поз. Б на рис. А 10-20 Вт обеспечат питание планшетки, подзарядку смартфона или засветят лампочку-экономку.

Далее, выбираем генератор. Отлично подойдет китайский моторчик – ступица колеса для электровелосипедов, поз. 1 на рис. Его мощность как мотора – 200-300 Вт, но в режиме генератора он даст примерно до 100 Вт. Но подойдет ли он нам по оборотам?

Показатель быстроходности z для 6 лопастей равен 3. Формула для расчета скорости вращения под нагрузкой – N = v/l*z*60, где N – частота вращения, 1/мин, v – скорость ветра, а l – длина окружности ротора. При размахе лопасти 0,8 м и ветре 5 м/с получаем 72 об/мин; при 20 м/с – 288 об/мин. Примерно с такой же скоростью вращается и велосипедное колесо, так что свои 10-20 Вт от генератора, способного дать 100, мы уж снимем. Можно ротор сажать прямо на его вал.

Но тут возникает следующая проблема: мы, потратив немало труда и денег, хотя бы на моторчик, получили… игрушку! Что такое 10-20, ну, 50 Вт? А лопастный ветряк, способный запитать хотя бы телевизор, дома не сделаешь. Нельзя ли купить готовый мини-ветрогенератор, и не обойдется ли он дешевле? Еще как можно, и еще как дешевле, см. поз. 4 и 5. Кроме того, он будет еще и мобильным. Поставил на пенек – и пользуйся.

Второй вариант – если где-то валяется шаговый двигатель от старого 5- или 8-дюймового дисковода, или от привода бумаги или каретки негодного струйного или матричного принтера. Он может работать как генератор, и приделать к нему карусельный ротор из консервных банок (поз. 6) проще, чем собирать конструкцию наподобие показанной на поз. 3.

В целом по «лопастникам» вывод однозначен: самодельные – скорее для того, чтобы помастерить всласть, но не для реальной долговременной энергоотдачи.

Видео: простейший ветрогенератор для освещения дачи

Парусники

Парусный ветрогенератор известен давно, но мягкие полотнища его лопастей (см. рис.) начали делать с появлением высокопрочных износостойких синтетических тканей и пленок. Многолопастные ветряки с жесткими парусами широко разошлись по миру как привод маломощных автоматических водокачек, но их техданные ниже даже чем у каруселей.

Однако мягкий парус как крыло ветряка, похоже, оказался не так-то прост. Дело не в ветроустойчивости (производители не ограничивают максимально допустимую скорость ветра): яхсменам-парусникам и так известно, что ветру разорвать полотнище бермудского паруса практически невозможно. Скорее шкот вырвет, или мачту сломает, или вся посудина сделает «поворот оверкиль». Дело в энергетике.

К сожалению, точных данных испытаний не удается найти. По отзывам пользователей удалось составить «синтетические» зависимости для установки ВЭУ-4.380/220.50 таганрогского производства с диаметром ветроколеса 5 м, массой ветроголовки 160 кг и частотой вращения до 40 1/мин; они представлены на рис.

Разумеется, ручательств за 100% достоверность быть не может, но и так видно, что плоско-механистической моделью тут и не пахнет. Никак не может 5-метровое колесо на плоском ветре в 3 м/с дать около 1 кВт, при 7 м/с выйти на плато по мощности и далее держать ее до жестокого шторма. Производители, кстати, заявляют, что номинальные 4 кВт можно получить и при 3 м/с, но при установке их силами по результатам исследований местной аэрологии.

Количественной теории также не обнаруживается; пояснения разработчиков маловразумительны. Однако, поскольку таганрогские ВЭУ народ покупает, и они работают, остается предположить, что заявленные коническая циркуляция и пропульсивный эффект – не фикция. Во всяком случае, возможны.

Тогда, выходит, ПЕРЕД ротором, по закону сохранения импульса, должен возникнуть тоже конический вихрь, но расширяющийся и медленный. И такая воронка будет сгонять ветер к ротору, его эффективная поверхность получится больше ометаемой, а КИЭВ – сверхединичным.

Пролить свет на этот вопрос могли бы натурные измерения поля давления перед ротором, хотя бы бытовым анероидом. Если оно окажется выше, чем с боков в стороне, то, действительно, парусные ВСУ работают, как жук летает.

Самодельный генератор

Из сказанного выше ясно, что самодельщикам лучше браться или за вертикалки, или за парусники. Но те и другие очень медленные, а передача на быстроходный генератор – лишняя работа, лишние затраты и потери. Можно ли сделать эффективный тихоходный электрогенератор самому?

Да, можно, на магнитах из ниобиевого сплава, т. наз. супермагнитах. Процесс изготовления основных деталей показан на рис. Катушки – каждая из 55 витков медного 1 мм провода в термостойкой высокопрочной эмалевой изоляции, ПЭММ, ПЭТВ и т.п. Высота обмоток – 9 мм.

Обратите внимание на пазы под шпонки в половинах ротора. Они должны быть расположены так, чтобы магниты (они приклеиваются к магнитопроводу эпоксидкой или акрилом) после сборки сошлись разноименными полюсами. «Блины» (магнитопроводы) должны быть изготовлены из магнитомягкого ферромагнетика; подойдет обычная конструкционная сталь. Толщина «блинов» – не менее 6 мм.

Вообще-то лучше купить магниты с осевым отверстием и притянуть их винтами; супермагниты притягиваются со страшной силой. По этой же причине на вал между «блинами» надевается цилиндрическая проставка высотой 12 мм.

Обмотки, составляющие секции статора, соединяются по схемам, также приведенным на рис. Спаянные концы не должны быть натянуты, но должны образовывать петли, иначе эпоксидка, которой будет залит статор, застывая, может порвать провода.

Заливают статор в изложнице до толщины 10 мм. Центрировать и балансировать не нужно, статор не вращается. Зазор между ротором и статором – по 1 мм с каждой стороны. Статор в корпусе генератора нужно надежно зафиксировать не только от смещения по оси, но и от проворачивания; сильное магнитное поле при токе в нагрузке будет тянуть его за собой.

Видео: генератор для ветряка своими руками

Вывод

И что же мы имеем напоследок? Интерес к «лопастникам» объясняется скорее их эффектным внешним видом, чем действительными эксплуатационными качествами в самодельном исполнении и на малых мощностях. Самодельная карусельная ВСУ даст «дежурную» мощность для зарядки автоаккумулятора или энергоснабжения небольшого дома.

А вот с парусными ВСУ стоит поэкспериментировать мастерам с творческой жилкой, особенно в мини-исполнении, с колесом 1-2 м диаметром. Если предположения разработчиков верны, то с такого можно будет снять, посредством описанного выше китайского движка-генератора, все его 200-300 Вт.

Андрей сказал(а):

Спасибо за вашу бесплатную консультацию…А цены “от фирм”не реально дороги,и я думаю,что мастеровые люди из глубинки смогут сделать генераторы подобные вашему.А аккамуляторы Li-po можно выписать из Китая,инверторы в Челябинске делают очень хорошие (с плавным синусом).А паруса,лопасти или роторы – это очередной повод для полёта мысли наших рукастых Русских мужиков.

Иван сказал(а):

вопрос:
Для ветряков с вертикальной осью(позиция 1) и варианта “Ленца” возможно добавить дополнительную деталь – крыльчатку,выставляющуюся по ветру, и закрывающую от него же бесполезную сторону(идущую в сторону ветра). То есть ветер будет не лопасть тормозить, а этот “экран”. Постановка по ветру “хвостом”, находящимся за самим ветряком ниже и выше лопостей(гребней). Читал статью и родилась идея.

Нажимая кнопку «Добавить комментарий», я соглашаюсь с сайта.

В разделе размещена основная информация для изготовления генераторов для ветряков. Расчёты напряжения, силы тока, и мощности генераторов. Переделка асинхронных двигателей на неодимовые магниты. Дисковые аксиальные генераторы. Генераторы из автомобильных генераторов. Схемы соединения обмоток статора.

>

Расчёт мощности и КПД генератора, подбор винта

В этой статье я буду говорить о том как рассчитать мощность генератора и подобрать винт с учётом КПД генератора. Многие вообще не учитывают КПД генератора, и получается так что винт не тянет генератор, особенно на малом ветре

>

Как делать дисковый аксиальный генератор инструкция

В статье я описал общие правила для изготовления дисковых генераторов. Если есть вопросы то оставляйте в комментариях внизу статьи, и я отвечу, и буду дополнять эту статью

>

Тестирование статоров на 9 и 18 катушек,
какой статор оказался лучше

В статье два видеоролика где да разных человека тестируют, тоесть сравнивают одинаковые по параметрам статоры, но число катушек в одном 9, а во втоом 18 катушек, результаты описаны в статье

>

Магниты для ветрогенераторов

Магниты я обычно заказываю на алиэкспресс, но бывает и на одном из российских сайтов, в статье ссылки на популярные магниты и описание

>

Мощность и КПД генератора - от чего они зависят

При каких условиях будет максимальная мощность генераторра, и что влияет на мощность. Как влияет мощность, напряжение и ток на КПД генератора, как работает генератор и его нагрузка

>

Расчёт дискового генератора

В статье я описал базовую информацию по расчёту дисковых аксиальных генераторов. Расчёт размеров и конфигурации генератора, расчёт обмотки статора, ивычисление напряжения, сопротивления, силы тока и мощности генератора

>

Таблица сопротивлений медного провода различных диаметров

На странице размещена таблица с удельным сопротивлением проводов различного диаметра начиная с диаметра от 0.05 мм и до 2.44 мм. Пользуясь данными в таблице можно рассчитать сопотивление обмоток генераторов и электродвигателей

>

Нестандартная обмотка генератора, снижение залипания

Калькулятор расчёта генераторов с нестандартным количесвом полюсов и схемой намотки трёхфазного генератора. В статье описание как пользоваться калькулятором и ссылка не него, как рассчиать схему намотки и количество магнитов на роторе, их ширину относительно зуба статора.

>

Напряжение автомобильных генераторов

Начало звряда акккумулятора, при каких оборотах автогенераторов начинается зарядка аккумулятора. Таблица с данными различных автомобильных генераторов

>

И снова Авто-генератор!

Автомобильный генератор для ветрогенератора, применение DC-DC преобразователя для повышения напряжения генератора на низких оборотах

>

Авто-генератор на ветряк без переделки

Применение автомобильного генератора без переделки в качестве генератора для ветряка, на что можно расчитывать и что получится. Схема самовозбуждения, двух-лопастной винт, мощность и обороты

>

Переделка асинхронных двигателей на неодимовые магниты

В статье данные асинхронных двигателей, размеры, сопротивления обмоток и другое, а так-же в таблицах расчёт мощности уже готового генератора при работе на АКБ 12/24/48 вольт

>

Расчёт и изготовление генератора

Основные моменты расчета генератора для ветряка, вычисление напряжения катушек генератора в зависисости от числа витков и магнитной индукции магнитов. Вычисление силы тока и мощности генератора на зарядку аккумулятора

>

Как расчитать генератор для ветряка

Простой пример расчета основных параметров трехфазного генератора на постоянных магнитах. Я постарался написать как можно понятнее для начинающих процесс расчета и что к чему, от чего зависят параметры генератора.


>

Расчет аксиального генератора

Подробно описан процесс расчета аксиального генератора с бесжелезным статором на неодимовых магнитах. Это описание особенно полезно для начинающих так-как дает ответы на все вопросы, которые возникают перед изготовлением первого генератора аксиального типа.

>

Переделываем асинхронный вгенератор

Переделка асинхронного двигателя в общем-то не так уж и сложна, и в основном для изготовления генераторов средней и большой мощности используют именно асинхронные двигатели, так-как они просты в переделке и конструктивно идеально подходят для низко-оборотного генератора. В статье просто и подробно описаны варианты переделки асинхронника.

Как измерить момент страгивания генератора Процесс измерения момента страгивания или величины залипания генератора очень прост, всего лишь нужно ускорение свободного падения умножить на длину плеча в метрах и умножить на вес груза весящего на плече в килограммах. Подробнее смотрите в статье.

>

Борьба с залипаниями в генераторах

Методы уменьшения залипания в генераторах на постоянных магнитах. В статье рассмотрены основные способы расчета и расположения магнитов на роторе для уменьшения залипания генератора. Один из основных параметров генератора, создаваемого для ветряка, это залипание генератора, которое влияет на момент страгивания винта, а далее на старт винта этого генератора.

Бестопливный генератор электроэнергии

Стационарный электрический шихтованный электромагнитный сердечник, набранный из тонких листов до получения необходимой высоты набора, имеющий закрытые пазы, радиально распределенные, в которых расположены вместе две трехфазные обмотки, одна в центре, другая на периферии, с целью получения вращающегося электромагнитного поля.

Подводя временно трехфазный ток к одной из указанных обмоток, и, таким образом, получаем индуцированное напряжение на второй обмотке; исходя из этого, имеем выходящую энергию намного больше, чем входную. С выхода схемы энергия по обратной связи подается на вход и временный источник питания после отключается. Генератор будет работать самостоятельно неопределенно долго, постоянно вырабатывая большой избыток энергии.

(Автономный бестопливный генератор электроэнергии, бестопливный генератор своими руками,электромагнитный генератор,eco technology, свободная энергия, альтернативная энергия)

Описание рисунков

Рис.1 показывает первый вариант настоящего изобретения.

где: 1- внешний сердечник;

2- внутренний сердечник;

3- обмотки возбуждения;

4а- якорные (приемные) обмотки;

5а, 5в, 5с, 6- клеммы фазных обмоток возбуждения и нейтрали.

Рис.2 показывает схему размещения внутренних обмоток для варианта настоящего изобретения, показанного на рис.1.

где: 4в- схема соединения якорных (приемных) обмоток;

7а, 7в, 7с, 8- клеммы фазных якорных обмоток и нейтрали.

Рис.3 показывает единый наборный сердечник для второго варианта настоящего изобретения.

где: 9- сердечник;

10- пазы для обмоток.

Рис.4 показывает разделенный наборный сердечник, состоящий из двух частей для второго варианта настоящего изобретения.

где: 9а- внутренний сердечник;

10- внешний сердечник.

Рис.5 показывает схему размещения обмоток второго варианта изобретения, сделанного из наборных сердечников, показанных на рис.3 и 4.

где: 2- клеммы фазных якорных (приемных) обмоток;

11- ферромагнитный сердечник;

Рис.6 показывает пример распределения магнитного поля, производимого настоящим изобретением.

Рис.7 показывает вращение магнитного поля, производимого настоящим изобретением.

Рис.8 показывает полную систему настоящего изобретения.

где: 24- временный внешний источник питания;

25- электронный преобразователь (инвертор) постоянного напряжения в переменное трехфазное напряжение;

26- входные клеммы постоянного тока питания инвертора;

27- отбор мощности в виде постоянного тока;

28- выход переменного трехфазного напряжения из инвертора;

29- выходные клеммы генератора;

30- выходные клеммы обратной связи от генератора;

31- диодный выпрямитель;

32- выход постоянного напряжения после выпрямителя.

Рис.9 показывает расширенную схему второго варианта настоящего изобретения, показанного на рис. 3 и 4.

где: 11- ферромагнитный сердечник;

12- клеммы трехфазных обмоток возбуждения;

13, 14, 15- фазные обмотки возбуждения;

16- месторасположение фазных обмоток возбуждения;

17- месторасположение фазных якорных (приемных) обмоток;

18, 19, 20- фазные якорные (приемные) обмотки.

21- выходные клеммы генератора;

33- временный трехфазный внешний источник питания;

34- линия обратной связи генератора;

35- трансформатор для питания обмоток возбуждения;

36- трехфазный фазорегулятор;

37- размыкатель обратной связи генератора.

(0001) Существующая заявка требует приоритета от U.S. Временное Применение № серии 60/139.294, поданная 15 июня 1999 года.

(0002) Основание изобретения

(0003) Настоящее изобретение относится главным образом к области электрических энергогенерирующих систем. Конкретнее, настоящее изобретение относится к самопитающим (автономным) электроэнергогенерирующим устройствам.

(0004) Описание настоящего изобретения.

(0005) С тех пор, как Никола Тесла изобрел и запатентовал свою полифазную систему для генераторов, индуктивных двигателей и трансформаторов, никакого существенного усовершенствования не было сделано в области поля.

Генераторы производят многофазные напряжения и токи посредством механического вращательного движения, чтобы вынудить магнитное поле вращаться поперек радиально расположенных обмоток генератора. Основой системы индукционных двигателей было получение электромагнитного вращающегося поля, которое принуждает напряжения и токи производить электродвижущие силы, пригодные к использованию как механическая энергия или мощность. Наконец, трансформаторы управляли бы напряжениями и токами, чтобы делать их удобными для использования и передачи на длинные расстояния.

(0006) Во всех существующих электрических генераторах небольшое количество энергии, обычно меньше чем 1% выходной мощности больших генераторов, используется для возбуждения механически вращающихся электромагнитных полюсов, которые индуцируют напряжения и токи в проводниках, имеющих относительное движение между вращающимися и неподвижными полюсами.

(0007) Остальная часть энергии, расходуемая в процессе получения электричества, необходима, чтобы перемещать обмотки в пространстве и компенсировать потери системы: механические потери, потери на трение, потери на щетках, потери на сопротивление воздуха, потери реакции якоря, потери воздушного промежутка, потери на синхронное реактивное сопротивление, потери на вихревые токи, потери гистерезиса. Все они вместе являются причиной того, что во входной потребляемой энергии системы преобладает избыток механической энергии, необходимый для генерации всегда арифметически меньшего количества электроэнергии.

РЕЗЮМЕ ИЗОБРЕТЕНИ


008) Непрерывный электрический генератор (далее НЭГ) состоит из стационарного цилиндрического электромагнитного сердечника, набранного из тонких листовых пластин до образования цилиндра, в пазах которого расположены две трехфазные обмотки, не имеющие возможности двигаться или смещаться относительно друг друга. Когда одна из обмоток соединяется с временным трёхфазным источником питания, ею создается вращающееся электромагнитное поле, и это поле будет пересекать неподвижные катушки вторичных обмоток, индуктируя в них напряжения и токи. Таким же образом и в той же степени, как и в обычных генераторах, приблизительно один процент и менее от выходной мощности будет необходим для возбуждения и поддержания вращающегося магнитного поля.

(0009) В НЭГ нет никаких механических потерь, потерь трения, потерь сопротивления воздуха, потерь на щетках, потерь реакции якоря и потерь воздушного промежутка, так как нет никакого механического движения любого вида. Имеются лишь следующие потери: синхронные реактивные (индуктивные) потери, потери на вихревые токи и гистерезис, которые присущи конструкции и материалам генератора, но в той же самой степени, как и для обычных генераторов.

(0010) Один процент и менее полной энергии, произведенной существующими генераторами, идет на создание их собственного магнитного поля; механическая энергия, которая превышает суммарную выходную энергию существующих генераторов, используется, чтобы заставить это поле вращаться в процессе генерации электрического тока из этого поля. В НЭГ нет никакой потребности в движении, так как поле фактически уже вращается электромагнитным образом, следовательно, надобность в механической энергии отпадает. При сходных соотношениях токов возбуждения, сечений сердечника и конструкции обмоток, НЭГ значительно более эффективен, чем существующие генераторы, что также значит, что он может произвести значительно больше энергии, чем ему нужно для управления. НЭГ может запитывать себя сам по обратной связи, и генератор, после отключения временного (пускового) источника питания, переходит в автономный режим работы.

(0011) Как и любой другой генератор, НЭГ может возбудить свое собственное электромагнитное поле, используя минимальную часть произведенной собой же электроэнергии. НЭГ только нуждается в запуске посредством подсоединения его трехфазной обмотки индуктора к трехфазному внешнему источнику питания на время, необходимое для пуска, и после отключения от временного источника работа НЭГ будет происходить так, как было здесь описано. НЭГ будет постоянно генерировать большое количество электроэнергии согласно своей конструктивной мощности.

(0012) НЭГ может быть разработан и рассчитан с применением всех существующих на сегодня математических формул и соотношений, используемых при разработке и расчете современных электрических генераторов и двигателей. В расчетах применяются все законы и соотношения, используемые для подсчетов электромагнитной индукции и генерации.

(0013) За исключением Закона Сохранения Энергии, который, по большому счету, является не математическим уравнением, а теоретической концепцией, и по этой же самой причине не играющий никакой роли в математическом исчислении работы электрического генератора любого типа, НЭГ соблюдает все законы физики и электротехники. Существование НЭГ обязывает нас пересмотреть Закон Сохранения Энергии. По моему личному убеждению, электричество никогда не получалось из механической энергии, которую мы вкладываем в машину для перемещения масс и преодоления сопротивлений. Механическая система фактически обеспечивает канал для уплотнения электричества. НЭГ обеспечивает более эффективный канал для электричества.

ДЕТАЛЬНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ.

(0023) Настоящее изобретение- НЭГ, способный вырабатывать больше энергии, чем потреблять, и который обеспечивает себя производимой электроэнергией. Основная идея состоит в индуцировании электрического напряжения и тока без любого физического движения посредством использования вращающегося магнитного поля, полученного на трехфазном статоре, временно подключенного к трехфазному источнику питания, в размещенных неподвижных проводниках на пути указанного вращающегося магнитного поля, исключая надобность в механических силах.

(0024) Основной вариант системы представлен на рисунке 1, который показывает первый вариант настоящего изобретения. На рисунке показан стационарный ферромагнитный сердечник 1 с трехфазными обмотками возбуждения 3, расположенными под углами в 120 0 и соединенными в “звезду” 6, чтобы обеспечить вращающееся электромагнитное поле, которое в данном случае будет двухполюсным. Внутри сердечника 1 расположен второй стационарный сердечник 2 из ферромагнетика, без зазора между ними, то есть без воздушного промежутка. Этот второй сердечник имеет стационарные трехфазные обмотки 4А (рис.1), и 4В (рис.2), расположенные относительно внешних обмоток возбуждения 3 так, как показано на рисунках 1 и 2. Между этими двумя сердечниками нет никакого движения, также нет и воздушного промежутка между ними. Осей на сердечниках нет, так как нет вращения самих сердечников. Оба сердечника могут быть изготовлены из сложенных изолированных пластин или из изолированного и спрессованного ферромагнитного порошка (феррита). Система работает в обоих направлениях, индуцируя трехфазные напряжения и токи на стационарных катушках 4А внутренних обмоток 4В, выводя трехфазные токи на клеммы Т17А, Т27В и Т37С с внутренних обмоток 4В. Когда трехфазное напряжение подается на клеммы А5А, В5В и С5С, токи будут иметь одну и ту же величину, но они будут сдвинуты по времени на угол в 120 0 . Эти токи производят магнитодвижущие силы (МДС), которые, в свою очередь, создают вращающийся магнитный поток. Конструкция может варьироваться в широких пределах, так как она повторяет конструкцию современных альтернаторов (генераторов) и трехфазных моторов, однако в основе лежит один принцип: стационарное, но постоянно вращающееся магнитное поле, индуцирующее напряжения и токи в неподвижных катушках, расположенных на пути вращающегося магнитного поля. Схема показывает двухполюсное устройство обеих обмоток, но может быть использовано и множество других устройств, как в обычных двигателях и генераторах.

(0025) Рис.2 показывает размещение трехфазных внутренних обмоток 4В, которые обеспечивают практически симметричные напряжения и токи вследствие сдвига в 120 0 . Это подобно двухполюсной компоновке. Множество других трех- или полифазных компоновок может быть использовано. Везде, где проводник пересекает вращающееся магнитное поле, будет индуцироваться напряжение, снимаемое с клемм. Взаимные соединения обмоток зависят от устройства системы. В данном случае, мы получим трехфазное напряжение на клеммах Т17А, Т27В и Т37С и на нейтрали 8. Выходное напряжение зависит от плотности вращающегося магнитного потока, числа витков приемных обмоток, частоты приложенного тока (вместо скорости вращения) и длины проводника, пересекаемого полем, как и в любых других генераторах.

(0026) Рис.3 показывает второй вариант настоящего изобретения, в котором генератор изготовлен из набора одинаковых изолированных пластин, сложенных вместе в цилиндр до получения необходимой высоты. Этот вариант также может быть изготовлен из цельного куска феррита. Одни и те же пазы (окна) 10 будут содержать в себе внутренние и внешние обмотки 3, т.е. приемные обмотки и обмотки возбуждения (см. рис. 5). В данном случае показан 24- пазовый сердечник, но количество пазов может широко отличаться в зависимости от потребностей и конструктива.

(0027) Рис.4 показывает две части одной пластины для еще одного варианта настоящего изобретения. Для практического применения каждая пластина может быть разделена на две части: 9А и 9В, как показано, с целью облегчения намотки катушек. Потом эти части вставляются друг в друга без зазоров, как если бы они были единым целым.

(0028) Пластины, описанные выше, могут быть изготовлены из тонких (толщиной 0.15 мм и менее) изолированных листов 9 (или 9А и 9В) из материала с высокой магнитной проницаемостью и низкими потерями на гистерезис, такого, как, например, Hiperco 50A или аналогичного, для уменьшения потерь, или из прессованного электрически изолированного ферромагнитного порошка, который имеет более низкие потери на вихревые токи и гистерезис, что может сделать генератор более эффективным.

(0029) Принцип действия генератора.

НЭГ, как описано и показано на нижеследующих рисунках, разработан и предназначен для производства мощного вращающегося электромагнитного поля с низкими токами возбуждения. Используя слоистые материалы, типа вышеупомянутого Hiperco 50A, мы можем получить вращающиеся магнитные поля индукцией более 2 Тесла, так как нет никаких потерь воздушного промежутка, механических потерь, потерь сопротивления воздуха, потерь реакции якоря и т.п., указанных выше. Это может быть получено подачей трехфазного напряжения на клеммы А, В, С 12 обмоток возбуждения 13, 14 и 15 (5А, 5В и 5С на рис. 1), размещенных через угол 120 0 по отношению друг к другу (см. рис. 50) с внешнего источника питания.

(0030) Рис. 5 показывает пространственное размещение индукционных обмоток 13, 14 и 15 также, как и приемных обмоток 18А, 18В, 19А, 19В, 20А и 20В. Обе: и индуцирующие и приемные обмотки размещаются в одних и тех же пазах 10 или 16 и 17 одинаковым образом. Даже при том, что система работает в обоих направлениях, лучшая конфигурация, думается, следующая: обмотки возбуждения 13, 14 и 15 - в центре, а приемные (якорные) обмотки 18А, 18В, 19А, 19В, 20А и 20В - на периферии, т.к. малые обмотки более предпочтительны для возбуждения очень сильного вращающегося магнитного поля, благодаря низким потерям процесса, а с другой стороны, большие и мощные обмотки нужны для извлечения всей энергии, которую обеспечивает система. Обе обмотки соединены в “звезду” (не показано), но они могут соединяться и другими способами, как на других генераторах. Все вышесказанное справедливо и для варианта устройства, показанного на рисунках 1 и 2.

(0031) Обмотки возбуждения 13, 14 и 15 разработаны и рассчитаны таким образом, чтобы генератор мог запускаться от обычного трехфазного напряжения (230 В 60 Гц, например). Если местные напряжения в сети не подходят, можно управлять напряжением до получения желанного уровня с помощью трехфазного трансформатора, электронного преобразователя или инвертора и т.д. Как только мы получим нужное мощное магнитное поле, вращающееся и пересекающее неподвижные приемные (якорные) обмотки 18А, 18В, 19А, 19В, 20А и 20В, трехфазное напряжение может быть снято с клемм Т1, Т2, Т3 и N21 пропорционально плотности магнитного потока, количеству витков в катушках, частоты генерации (вместо угловой скорости вращения индуктора), длины проводников, пересекаемых вращающимся полем, как и в любом другом генераторе. Выходные токи будут трехфазными токами (или многофазными в зависимости от конструкции), и мы можем получить нейтраль 21, если используем соединение “звездой”, как в любых других генераторах.

(0032) Выходные переменные напряжения и токи - совершенные синусоидальные кривые, разделенные во времени и полностью симметричные. Напряжения и токи, полученные этим способом, пригодны к использованию любым существующим методом. Любые напряжения могут быть получены, в зависимости от конструкции.

0033) Рис. 6 показывает образец магнитного потока, произведенного трехфазной обмоткой возбуждения 13, 14 и 15. Этот поток подобен потоку в статорах индукционных двигателей. Так как нет воздушного зазора, все части магнитного потока гомогенны (неразрывны) вне зависимости от используемого материала. Сердечник изготовлен из тонких изолированных пластин с высокой магнитной проницаемостью и низкими потерями на гистерезис; потери на вихревые токи минимальны благодаря небольшой толщине пластин. Нет никаких встречных потоков и реакции якоря, следовательно, магнитный поток может быть близким к потоку насыщения сердечника, а получен он может быть относительно небольшим током возбуждения или малой входной энергией. Благодаря сдвигу во времени между тремя фазами и пространственному распределению обмоток возбуждения, вращающееся магнитное поле может быть получено в сердечнике, как показано на рис. 7.

(0034) После запуска генератора небольшую часть полученной энергии подают на вход (рис. 8 и 9), чтобы питать катушки возбуждения 3 (на рис.1) или 13, 14 или 15 (на рис.5), как и в любом другом генераторе с самовозбуждением. Естественно, напряжения и фазы должны быть совершенно идентичны и симметричны, и если необходимо, то напряжения обратной связи могут быть обработаны и изменены различными трансформаторами, электронными регуляторами, фазорегуляторами (для коррекции фаз) или другими видами контроллеров напряжения и фаз.

(0035) Один возможный метод заключается в использовании электронного преобразователя 25, который первоначально выпрямляет линейное напряжение с двух или трех фаз переменного тока 24 в постоянный ток электронным выпрямителем 26 и после, электронным способом, преобразует постоянный ток 27 в переменный трехфазный ток 28 для получения трехфазных токов, сдвинутых по времени на 120 0 для возбуждения электромагнитных полей А, В и С. Некоторые преобразователи или инверторы используют однофазное (двухпроводное) питание, в то время как другие используют только трехфазное питание. Настоящий вариант использует преобразователь на 3 кВА, который может быть запитан двумя источниками по 220 В.

(0036) Вращающееся магнитное поле, полученное токами, протекающими через трехфазные обмотки возбуждения 13, 14 и 15, вызывает напряжение, подающееся на клеммы Т1, Т2, Т3 и N29 (7А, 7В, 7С, 8 на рис.2). После, выходное напряжение по проводам 30 возвращается назад в систему, преобразуясь в обратный переменный ток, который выпрямляется диодным выпрямителем 31 в постоянный ток 32 и после подается на клеммы электронного инвертора 26 (см. рис.8). После того как обратная связь замкнулась, НЭГ может быть отключен от временного источника 24 и дальше производить электроэнергию автономно.

(0037) На рис.9 показан второй вариант НЭГ. Основные принципы остаются такими же, как для описанного выше генератора, так и для показанного на рис. 1 и 2. Главные отличия заключаются в форме пластин и в пространственном распределении обмоток, как описано и показано ранее. Изменения в цепях обратной связи, использовании инверторов и фазосдвигающих трансформаторов также показаны.

(0038) Ферромагнитный сердечник 11 набран из цельных пластин 9, как показано на рис.3 (или из разделенных для удобства, как показано на рис.4), до получения желаемой высоты. Пазы 10, как показано ранее, содержат обе обмотки: возбуждения 13, 14, и 15 и приемные (якорные) 18А, 18В, 19А, 19В, 20А и 20В в тех же самых окнах 10 или 16 и 17. Выводные провода трех фаз 12 ведут к трехфазным обмоткам возбуждения 13, 14 и 15. Они запитаны: первоначально от временного источника 33 и от трехфазного выходного источника 34, как только генератор выйдет на самогенерацию.

(0039) Обмотки возбуждения 13, 14 и 15 имеют двухполюсное устройство, но много других трехфазных или многофазных устройств могут быть использованы для получения вращающегося электромагнитного поля. Эти обмотки соединены в “звезду” (не показано) тем же самым способом, как в варианте на рис. 1, 2 и 8, но могут быть соединены и другими способами. Обмотки возбуждения 13, 14 и 15 расположены на внутренней части 16 пазов 10.

(0040) Якорные (приемные) обмотки 18В, 19А, 19В, 20А и 20В имеют двухполюсное устройство, точно повторяя устройство обмоток возбуждения 13, 14 и 15, но много других различных устройств могут быть применены в зависимости от конструкции и назначения. Приемные (якорные) обмотки должны быть рассчитаны в направлении того, чтобы генератор имел наименьшие возможные синхронные реактивные и активные сопротивления. Поэтому большая часть выработанной энергии должна уходить в нагрузку, а не расходоваться на внутренних сопротивлениях. Эти обмотки соединяются в “звезду” для образования нейтрали 21, таким же самым способом, как и в варианте изобретения, показанного на рис.2, но могут быть соединены и по- другому, в зависимости от потребности. Якорные (приемные) обмотки расположены во внешней части 17 пазов 10.

(0041) Выходящие провода трех фаз и нейтрали 21 идут от якорных обмоток 18В, 19А, 19В, 20А и 20В. Вращающееся магнитное поле. созданное в сердечнике (см. рис. 6 и 7) обмотками возбуждения 13, 14 и 15, индуцирует напряжение, подводимое к клеммам Т1, Т2 и Т3 плюс нейтрали 29. С каждого трехфазного вывода 21 снимается по проводам 34 обратное напряжение для самозапитки системы.

(0042) Временный трехфазный источник питания 33 для запуска системы подключается к клеммам А, В и С 12. Н.Э.Г. должен мгновенно запуститься от внешнего трехфазного источника, а потом отключиться от него.

(0043) Даже при том, что выходное вторичное линейное напряжение может быть точно рассчитано и получено на якорных (приемных) обмотках, напряжение, необходимое для питания обмоток возбуждения (в зависимости от конструкции), может быть получено с трехфазного регулируемого трансформатора или с другого преобразователя напряжения 35, включенного между входом и выходом для более точного регулирования возвращаемого напряжения.

(0044) Расположенный после регулируемого трансформатора 35, трехфазный трансформатор- фазорегулятор будет корректировать и выравнивать любой сдвиг фаз в углах напряжений и токов до того, как подать питание на обмотки возбуждения. Эта система работает аналогично изображенной на рис. 8, которая использует преобразователь 25.

ак только напряжение и фазы совпадут с временным источником 33, выходные цепи 34 соединяются с входными цепями А, В и С 12 по цепи обратной связи 37 и временный источник 33 после отключается. НЭГ останется работать неопределенно долго без подвода энергии от внешнего источника, обеспечивая постоянно большой выход энергии.

(0046) Выходящая электроэнергия, вырабатываемая в этой системе, использовалась, чтобы произвести свет и тепло, запитывались многофазные двигатели, генерировались одно- и многофазные напряжения и токи промышленных частот, преобразовывались напряжения и токи посредством трансформаторов, выпрямлялись многофазные токи в постоянный ток так же хорошо, как и для других использований. Электричество, полученное описанным выше способом, столь же универсально и совершенно, как и электричество, получаемое обычными электрогенераторами. Но НЭГ автономен и не зависит от какого-либо другого внешнего источника энергии, он запитан сам от себя; он может быть использован везде без ограничений, он может быть сконструирован любого размера и обеспечивать выработку любого количества электроэнергии постоянно, согласно своей конструкции.

(0047) НЭГ является и будет очень простой машиной. Краеугольными камнями системы являются: ультранизкие потери неподвижных генерирующих систем и очень низкие конструктивные потери на синхронные реактивные сопротивления.

(0048) Приемные (якорные) обмотки должны быть рассчитаны исходя из того, что генератор должен иметь минимально возможные активное (омическое) сопротивление и наименьшее синхронное реактивное сопротивление. Исходя из этого, большая часть выходной мощности будет уходить в нагрузку, а не расходоваться на преодоление внутренних сопротивлений.

Патентная формула заключается в следующем:

1. НЭГ, включающий в себя:

Сердечник, имеющий множество пазов;

Возбуждение заключается в производстве стационарного вращающегося электромагнитного поля, читай индукция возбуждения должна пронизывать множество пазов;

Электромагнитная индукция состоит в наведении электрической энергии, читай индукция наведения должна присутствовать во множестве пазов, также наведенная индукция должна быть источником энергии для питания обмоток возбуждения;

2. НЭГ, описанный в 1 пункте, имеет цельный, нераздельный сердечник;

3. НЭГ, описанный в 1 пункте, может также состоять из:

Внутренней части;

Внешней части, причем внутренняя и внешняя части должны быть собраны вместе без зазоров и неподвижно друг относительно друга.

4. НЭГ, описанный в 1 пункте, может иметь сердечник, набранный из множества пластин.

5. НЭГ, описанный в 1 пункте, может иметь сердечник, изготовленный из ферритового порошка, спрессованного, отформованного и изолированного.

6. НЭГ, описанный в 1 пункте, может иметь цилиндрическую цельную центральную часть.

7. НЭГ, описанный в 1 пункте, имеет множество пазов (щелей), расходящихся в стороны от цилиндрической центральной части к внешнему краю сердечника.

8. НЭГ, описанный в 1 пункте, в котором возбуждение происходит в первом (внешнем) ряду электрических обмоток.

9. НЭГ, описанный в 1 пункте, в котором наведение (индукция) происходит во втором (внутреннем) ряду электрических обмоток.

10. НЭГ, описанный в 8 пункте, в котором первый ряд электрических обмоток имеет двухполюсное устройство.

11. НЭГ, описанный в 9 пункте, в котором второй ряд электрических обмоток имеет двухполюсное устройство.

12. НЭГ, описанный в 8 пункте, в котором первый ряд электрических обмоток состоит из трехфазных обмоток, расположенных через угол 120 0 относительно друг друга.

13. НЭГ, описанный в 9 пункте, в котором второй ряд электрических обмоток состоит из трехфазных обмоток, расположенных через угол 120 0 относительно друг друга.

14. НЭГ, описанный в 7 пункте, в котором обмотки возбуждения расположены в пазах вблизи цилиндрической центральной части.

15. НЭГ, описанный в 7 пункте, в котором приемные (якорные) обмотки расположены в пазах в противоположной стороне от цилиндрической центральной части.

16. НЭГ, описанный в 1 пункте, кроме того, включает в себя систему обратной связи для отбора мощности от приемных катушек для собственных нужд генератора.

17. НЭГ, описанный в 16 пункте, в котором источник питания отключается, как только заработает система обратной связи для отбора мощности для питания обмоток возбуждения.

18. НЭГ, описанный в 16 пункте, кроме того, включает в себя регулятор, служащий для регулировки выходной мощности.

19. НЭГ, описанный в 16 пункте, кроме того, включает в себя фазорегулятор для регулирования сдвига фаз на выходе источника питания.

(альтернативная энергия,Автономный бестопливный генератор электроэнергии, бестопливный генератор своими руками,электромагнитный генератор,eco technology, свободная энергия, кулибины)

Russian portal about alternative energy and eco technology